Trees
Lecture 16
Trees
Trees

- A tree is a special kind of graph.
A tree is a special kind of graph.
Trees

- A tree is a special kind of graph.
- In graph theory: a connected acyclic (simple) graph.
Trees

- A tree is a special kind of graph.
- In graph theory: a connected acyclic (simple) graph.
- If not necessarily connected, it’s a forest.
Trees

- A tree is a special kind of graph.

- In graph theory: a **connected** **acyclic** (simple) graph.

 - If not necessarily connected, it’s a forest.

- Trees in computer science: an extra feature.
Trees

- A tree is a special kind of graph.
- In graph theory: a connected acyclic (simple) graph.
 - If not necessarily connected, it’s a forest.
- Trees in computer science: an extra feature.
 - One node is designated as the root of the tree.
Trees

- A tree is a special kind of graph.
- In graph theory: a connected acyclic (simple) graph.
 - If not necessarily connected, it's a forest.
- Trees in computer science: an extra feature.
 - One node is designated as the root of the tree.
 - (And we draw it is an upside down tree.)
Trees

- A tree is a special kind of graph.
- In graph theory: a connected acyclic (simple) graph.
- If not necessarily connected, it’s a forest.
- Trees in computer science: an extra feature.
- One node is designated as the root of the tree.
- (And we draw it is an upside down tree.)
Trees
Trees

Alternate definition:
Trees

- Alternate definition:

- A graph with a root node such that every node u has a **unique** path to the root
Alternate definition:

A graph with a root node such that every node u has a unique path to the root

There is a path: it is a connected graph.
Trees

Alternate definition:

A graph with a root node such that every node u has a **unique** path to the root.

- There is a path: it is a connected graph.
- Unique: there can be two paths between root and u if and only if there is a cycle.
Anatomy of a Tree
Anatomy of a Tree
Anatomy of a Tree

Any edge \(\{u,v\} \) appears in the path to root from exactly one of \(u \), \(v \).
Any edge \{u,v\} appears in the path to root from exactly one of u, v.

If root to v path uses \{u,v\} then we say v is a child of u.
Anatomy of a Tree

- Any edge \(\{u,v\} \) appears in the path to root from exactly one of \(u, v \)
- If root to \(v \) path uses \(\{u,v\} \) then we say \(v \) is a child of \(u \)
Anatomy of a Tree

- Any edge \(\{u,v\} \) appears in the path to root from exactly one of \(u, v \).
- If root to \(v \) path uses \(\{u,v\} \) then we say \(v \) is a child of \(u \).
- And \(u \) is the parent of \(v \).
Anatomy of a Tree

- Any edge \(\{u,v\} \) appears in the path to root from exactly one of \(u, v \)
- If root to \(v \) path uses \(\{u,v\} \) then we say \(v \) is a child of \(u \)
- And \(u \) is the parent of \(v \)
- Every node except the root has a unique parent
Anatomy of a Tree

- Any edge \{u,v\} appears in the path to root from exactly one of \(u, v\)
 - If root to \(v\) path uses \{u,v\} then we say \(v\) is a child of \(u\)
 - And \(u\) is the parent of \(v\)
 - Every node except the root has a unique parent
- Leaf: a node without children
Anatomy of a Tree

- Any edge \(\{u,v\}\) appears in the path to root from exactly one of \(u\), \(v\).
 - If root to \(v\) path uses \(\{u,v\}\) then we say \(v\) is a child of \(u\).
 - And \(u\) is the parent of \(v\).
- Every node except the root has a unique parent.
- Leaf: a node without children.
Anatomy of a Tree

- Any edge \(\{u,v\} \) appears in the path to root from exactly one of \(u, v \)
 - If root to \(v \) path uses \(\{u,v\} \) then we say \(v \) is a **child** of \(u \)
 - And \(u \) is the **parent** of \(v \)
- Every node except the root has a **unique parent**
- **Leaf**: a node without children
 - Every tree has at least one leaf
Anatomy of a Tree

- Any edge \{u,v\} appears in the path to root from exactly one of u, v
- If root to v path uses \{u,v\} then we say v is a child of u
- And u is the parent of v
- Every node except the root has a unique parent
- Leaf: a node without children
- Every tree has at least one leaf
- If tree has only the root, it is a leaf as well
Any edge \{u,v\} appears in the path to root from exactly one of u, v. If root to v path uses \{u,v\} then we say v is a child of u. And u is the parent of v.

Every node except the root has a unique parent.

Leaf: a node without children.

Every tree has at least one leaf.

If tree has only the root, it is a leaf as well.

Internal nodes: all nodes other than the leaves.
Anatomy of a Tree

- **root**
- **u**
 - the parent of **v**
 - a child of **u**
- **v**
 - a leaf
Anatomy of a Tree

- Ancestor of u: all the nodes in the path from root to u (including root and u)
Anatomy of a Tree

- **Ancestor of** u: all the nodes in the path from root to u (including root and u)
- **Descendants of** u: all nodes which have u as an ancestor
Anatomy of a Tree

- **Ancestor of u**: all the nodes in the path from root to u (including root and u)
- **Descendants of u**: all nodes which have u as an ancestor
- **Sub-tree rooted at u**: u and all its descendants, and edges among them
Anatomy of a Tree

- **Ancestor of u:** all the nodes in the path from root to u (including root and u)
- **Descendants of u:** all nodes which have u as an ancestor
- **Sub-tree rooted at u:** u and all its descendants, and edges among them
- **Recursive structure (useful for induction):** Deleting the root breaks up the tree into subtrees whose roots are the children of the original root
Anatomy of a Tree

- **Ancestor of** \(u \): all the nodes in the path from root to \(u \) (including root and \(u \))

- **Descendants of** \(u \): all nodes which have \(u \) as an ancestor

- **Sub-tree rooted at** \(u \): \(u \) and all its descendants, and edges among them

- **Recursive structure** (useful for induction): Deleting the root breaks up the tree into subtrees whose roots are the children of the original root
Anatomy of a Tree

- **root**
- **u** (the parent of v)
- **v** (a child of u)
- **a leaf**
Anatomy of a Tree

- Depth of a node: distance (length of the unique path to it) from root

Diagram:
- root
- the parent of v
- a child of u
- a leaf
Anatomy of a Tree

- **Depth of a node**: distance (length of the unique path to it) from root
- **Depth(root)** = 0
Anatomy of a Tree

- **Depth of a node**: distance (length of the unique path to it) from root
 - Depth(root) = 0
- **Levels**: All nodes of the same depth form
Anatomy of a Tree

- **Depth of a node**: distance (length of the unique path to it) from root
 - Depth(root) = 0
- **Levels**: All nodes of the same depth form
 - Level 0: only the root
Anatomy of a Tree

- **Depth of a node**: distance (length of the unique path to it) from root
 - $\text{Depth(root)} = 0$

- **Levels**: All nodes of the same depth form
 - Level 0: only the root
 - Level 1: roots children ...
Anatomy of a Tree

- Depth of a node: distance (length of the unique path to it) from root
 - Depth(root) = 0
- Levels: All nodes of the same depth form
 - Level 0: only the root
 - Level 1: roots children ...
- Edges only between adjacent levels (hence bipartite)
Anatomy of a Tree

- **Depth of a node**: distance (length of the unique path to it) from root
 - Depth(root) = 0
- **Levels**: All nodes of the same depth form
 - Level 0: only the root
 - Level 1: roots children ...
 - Edges only between adjacent levels (hence bipartite)
- Leaves may occur at various levels
Anatomy of a Tree

- **root**
- **u** is a child of **v**
- **v** is a leaf
- **u** is the parent of **v**
Anatomy of a Tree

- **Arity of a tree**: Maximum number of children (= max-degree - 1, or root’s degree)
Anatomy of a Tree

- **Arity of a tree**: Maximum number of children (= max-degree - 1, or root's degree)
- Binary, Ternary, m-ary, ...

Anatomy of a Tree

- **Arity of a tree**: Maximum number of children (= max-degree - 1, or root's degree)
 - Binary, Ternary, m-ary, ...
- **Full m-ary tree**: Every internal node has exactly m children
Anatomy of a Tree

- **Arity of a tree**: Maximum number of children (= max-degree - 1, or root’s degree)
 - Binary, Ternary, m-ary, ...
- **Full m-ary tree**: Every internal node has exactly m children
- **Complete & Full tree**: A full m-ary tree with all leaves at the same level
Anatomy of a Tree

- **Arity of a tree**: Maximum number of children (= max-degree - 1, or root's degree)
 - Binary, Ternary, m-ary, ...
- **Full m-ary tree**: Every internal node has exactly m children
- **Complete & Full tree**: A full m-ary tree with all leaves at the same level
- In a full m-ary tree with p internal nodes:
Anatomy of a Tree

- **Arity of a tree**: Maximum number of children (= max-degree - 1, or root's degree)
 - Binary, Ternary, m-ary, ...
- **Full m-ary tree**: Every internal node has exactly \(m \) children
- **Complete & Full tree**: A full m-ary tree with all leaves at the same level
- In a full m-ary tree with \(p \) internal nodes:
 - \(|V| = m \cdot p + 1\) (why?)
Anatomy of a Tree

- **Arity of a tree**: Maximum number of children (= max-degree - 1, or root’s degree)
 - Binary, Ternary, m-ary, ...
- **Full m-ary tree**: Every internal node has exactly m children
- **Complete & Full tree**: A full m-ary tree with all leaves at the same level
- In a full m-ary tree with p internal nodes:
 - $|V| = m.p + 1$ (why?)
 - $|E| = m.p$
Anatomy of a Tree

Arity of a tree: Maximum number of children (= max-degree - 1, or root’s degree)

- Binary, Ternary, m-ary, ...

Full m-ary tree: Every internal node has exactly m children

Complete & Full tree: A full m-ary tree with all leaves at the same level

In any full m-ary tree with p internal nodes:

- $|V| = m.p + 1$ (why?)
- $|E| = m.p$

In any tree: $|E| = |V| - 1$
Question
Question

Pick the correct statement

A. In a full binary tree the degree of each internal node is 2
B. In a full binary tree a leaf must always have degree 1
C. A full binary tree with p internal nodes has exactly p+1 leaves
D. A full binary tree with p internal nodes has exactly 2p+1 leaves
E. None of the above
Trees in the Wild
Number of Edges
Number of Edges

In any tree, $|E| = |V| - 1$
Number of Edges

- In any tree, $|E| = |V| - 1$
- Proof by induction: induct on the number of nodes, $|V|$
Number of Edges

In any tree, $|E| = |V|-1$

Proof by induction: induct on the number of nodes, $|V|$

Base case: $|V| = 1$. Only one such tree, and it has $|E|=0$.
Number of Edges

In any tree, $|E| = |V|-1$

Proof by induction: induct on the number of nodes, $|V|$

Base case: $|V| = 1$. Only one such tree, and it has $|E|=0$.

Induction step: for all $k > 1$

Hypothesis: for every tree (V,E) with $|V|=k-1$, $|E|=|V|-1$

To prove: for every tree (V,E) with $|V|=k$, $|E|=|V|-1$
In any tree, \(|E| = |V| - 1\)

Proof by induction: induct on the number of nodes, \(|V|\)

Base case: \(|V| = 1\). Only one such tree, and it has \(|E| = 0\).

Induction step: for all \(k > 1\)

Hypothesis: for every tree \((V,E)\) with \(|V| = k - 1\), \(|E| = |V| - 1\)

To prove: for every tree \((V,E)\) with \(|V| = k\), \(|E| = |V| - 1\)

Suppose \(G = (V,E)\) is a tree with \(|V| = k > 1\). It must have at least one leaf. This leaf is not the root. So its degree = 1 (one parent, no child). Now consider \(G' = (V',E')\) obtained by deleting this leaf and the one edge incident on it. \(|V'| = k - 1\). \(G'\) is still a tree (no other path passed through this leaf). By induction hypothesis, \(|E'| = k - 2\). But \(|E| = |E'| + 1\). So \(|E| = k - 1\).
Number of Edges

In any tree, $|E| = |V| - 1$

Proof by induction: induct on the number of nodes, $|V|$

Base case: $|V| = 1$. Only one such tree, and it has $|E| = 0$.

Induction step: for all $k > 1$

Hypothesis: for every tree (V, E) with $|V| = k - 1$, $|E| = |V| - 1$

To prove: for every tree (V, E) with $|V| = k$, $|E| = |V| - 1$

Suppose $G = (V, E)$ is a tree with $|V| = k > 1$. It must have at least one leaf. This leaf is not the root. So its degree = 1 (one parent, no child). Now consider $G' = (V', E')$ obtained by deleting this leaf and the one edge incident on it. $|V'| = k - 1$. G' is still a tree (no other path passed through this leaf). By induction hypothesis, $|E'| = k - 2$. But $|E| = |E'| + 1$. So $|E| = k - 1$.
Binary Trees
Binary Trees

- Full binary tree: $|V| = 2 \times \text{#internal nodes} + 1$
Binary Trees

- Full binary tree: \(|V| = 2 \times \text{#internal nodes} + 1\)
- A little over half of the tree lives in the leaves
Binary Trees

- Full binary tree: $|V| = 2 \times \#\text{internal nodes} + 1$
- A little over half of the tree lives in the leaves
- If the tree is complete and full, then the height is only logarithmic in the total number of nodes (or leaves)
Binary Trees

- Full binary tree: \(|V| = 2 \times \#\text{internal nodes} + 1\)
- A little over half of the tree lives in the leaves
- If the tree is complete and full, then the height is only logarithmic in the total number of nodes (or leaves)

\[|V| = 2^{h+1} - 1 \]
\[h = \lceil \log_2 |V| \rceil \]
Binary Trees

- Full binary tree: $|V| = 2 \times \#\text{internal nodes} + 1$
- A little over half of the tree lives in the leaves
- If the tree is complete and full, then the height is only logarithmic in the total number of nodes (or leaves)
- Every node has a “short path” to the root

$|V| = 2^{h+1} - 1$

$h = \lceil \log_2 |V| \rceil$
Binary Trees

- Full binary tree: $|V| = 2 \times \#\text{internal nodes} + 1$
- A little over half of the tree lives in the leaves
- If the tree is complete and full, then the height is only logarithmic in the total number of nodes (or leaves)
- Every node has a "short path" to the root
- Using only degree 3

$|V| = 2^{h+1} - 1$
$h = \lfloor \log_2 |V| \rfloor$
Binary Trees

- Full binary tree: $|V| = 2 \times \#\text{internal nodes} + 1$
- A little over half of the tree lives in the leaves
- If the tree is complete and full, then the height is only logarithmic in the total number of nodes (or leaves)
- Every node has a "short path" to the root
- Using only degree 3
- Ideal for storing data (later)

$|V| = 2^{h+1} - 1$
$h = \lceil \log_2 |V| \rceil$
Binary Trees

- Full binary tree: $|V| = 2 \times \#\text{internal nodes} + 1$
- A little over half of the tree lives in the leaves
- If the tree is complete and full, then the height is only logarithmic in the total number of nodes (or leaves)
 - Every node has a “short path” to the root
 - Using only degree 3
 - Ideal for storing data (later)
 - (But there is only one path, so not suitable in applications that need some form of resilience)
Binary Trees

- Full binary tree: $|V| = 2 \times \#\text{internal nodes} + 1$
- A little over half of the tree lives in the leaves
- If the tree is complete and full, then the height is only logarithmic in the total number of nodes (or leaves)
- Every node has a “short path” to the root
- Using only degree 3
- Ideal for storing data (later)

- (But there is only one path, so not suitable in applications that need some form of resilience)

- Important problem: To maintain the “balance” of the tree even if the tree evolves (nodes added/deleted) over time
Binary Trees

- Full binary tree: $|V| = 2 \times \text{#internal nodes} + 1$
- A little over half of the tree lives in the leaves
- If the tree is complete and full, then the height is only logarithmic in the total number of nodes (or leaves)
- Every node has a “short path” to the root
- Using only degree 3
- Ideal for storing data (later)
- (But there is only one path, so not suitable in applications that need some form of resilience)

Important problem: To maintain the “balance” of the tree even if the tree evolves (nodes added/deleted) over time
- i.e., keep height roughly $\log_2 |V|$
Recursion Trees
(déjà vu)

- $T(0) = 1$
- $T(n) = 2T(n-1) + 1$
- $T(n) = 2^{n+1} - 1$ (guess)

Base case: $n=0$.

Inductive step: $k \geq 1$.

- $T(k) = 2T(k-1) + 1 = 2(2^k-1) + 1 = 2^{k+1} - 1$ ✔
Recursion Trees
(déjà vu)

- $T(0) = 1$
- $T(n) = 2T(n-1) + 1$
- $T(n) = 2^{n+1} - 1$ \(\text{(guess)} \)

Base case: $n=0$.

Inductive step: $k \geq 1$.

- $T(k) = 2T(k-1) + 1 = 2(2^k - 1) + 1 = 2^{k+1} - 1$ \(\checkmark \)

$T(h) = \#\text{nodes in a complete & full binary tree of height } h$
Recursion Trees (déjà vu)

- $T(0) = 1$
- $T(n) = 2T(n-1) + 1$
- $T(n) = 2^{n+1} - 1$ (guess)

Base case: $n=0$.

Inductive step: $k \geq 1$.

- $T(k) = 2T(k-1) + 1 = 2(2^k - 1) + 1 = 2^{k+1} - 1$ ✔

$T(h) = \#\text{nodes in a complete & full binary tree of height } h$

$|V| = 2^{h+1} - 1$
Recursion Trees (déjà vu)

- \(T(0) = 1 \)
- \(T(n) = 2T(n-1) + 1 \)
- \(T(n) = 2^{n+1} - 1 \) (guess)
- Base case: \(n=0 \).
- Inductive step: \(k \geq 1 \).
 - \(T(k) = 2T(k-1) + 1 = 2(2^{k-1}) + 1 = 2^{k+1} - 1 \)
 - Induction is on the height of the tree

\(T(h) = \#\text{nodes in a complete & full binary tree of height } h \)

\(|V| = 2^{h+1} - 1 \)
Recursion Trees
(déjà vu)

T(0) = 1
T(n) = 2T(n-1) + 1
T(n) = 2^{n+1} - 1 (guess)

Base case: n=0.
Inductive step: k ≥ 1.

T(k) = 2T(k-1) + 1 = 2(2^k-1) + 1 = 2^{k+1} - 1 ✔

Induction is on the height of the tree
Then in the inductive step, we “delete” the root, not a leaf
Context-Free Grammar
Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions
Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

- $\text{Expr} \rightarrow \text{Expr} + \text{Expr}$
- $\text{Expr} \rightarrow \text{Expr} \times \text{Expr}$
- $\text{Expr} \rightarrow \text{Var}$
- $\text{Var} \rightarrow a$
- $\text{Var} \rightarrow b$
- $\text{Var} \rightarrow c$
Example: a (simplistic) syntax for arithmetic expressions

\[\text{Expr} \rightarrow \text{Expr} + \text{Expr}\]
\[\text{Expr} \rightarrow \text{Expr} \times \text{Expr}\]
\[\text{Expr} \rightarrow \text{Var}\]
\[\text{Var} \rightarrow a\]
\[\text{Var} \rightarrow b\]
\[\text{Var} \rightarrow c\]

Start: Expr

Terminals: +, \times, a, b, c
Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

- **Expr → Expr + Expr**
- **Expr → Expr × Expr**
- **Expr → Var**
 - **Var → a**
 - **Var → b**
 - **Var → c**
- **Start: Expr**
- **Terminals: +, ×, a, b, c**
- **e.g. a + b × c**
Example: a (simplistic) syntax for arithmetic expressions

\[
\begin{align*}
\text{Expr} & \rightarrow \text{Expr} + \text{Expr} \\
\text{Expr} & \rightarrow \text{Expr} \times \text{Expr} \\
\text{Expr} & \rightarrow \text{Var} \\
\text{Var} & \rightarrow a \\
\text{Var} & \rightarrow b \\
\text{Var} & \rightarrow c
\end{align*}
\]

Start: \text{Expr}

Terminals: +, \times, a, b, c

e.g. \(a + b \times c\)
Example: a (simplistic) syntax for arithmetic expressions

- \text{Expr} \rightarrow \text{Expr} + \text{Expr}
- \text{Expr} \rightarrow \text{Expr} \times \text{Expr}
- \text{Expr} \rightarrow \text{Var}
- \text{Var} \rightarrow a
- \text{Var} \rightarrow b
- \text{Var} \rightarrow c

Start: \text{Expr}

Terminals: +, \times, a, b, c

e.g. \(a + b \times c \)

(This grammar is “ambiguous” since there is another parse tree for the same string)
Question
Question

Which of the following strings are generated by (i.e., have a valid parse tree under) the grammar $S \rightarrow aSa \mid bSb \mid \epsilon$ (with start symbol S, and terminals a,b)?

A. $abSab$
B. $aabb$
C. $abba$
D. $abab$
E. None of the above