Graphs

Lecture 13
Examples so far

- Complete graph \(K_n \)
- Complete bi-partite graph \(K_{m,n} \)
- Cycle graph \(C_n \)
- Path graph \(P_n \)
- Hypercube graph \(Q_n \)
Graph Coloring
Graph Coloring

Recall bi-partite graphs
Graph Coloring

- Recall bi-partite graphs

- We can "color" the nodes using 2 colors (which part they are in) so that no edge between nodes of the same color
Graph Coloring

- Recall bi-partite graphs

- We can “color” the nodes using 2 colors (which part they are in) so that no edge between nodes of the same color

- More generally, a coloring (using k colors) is valid if there is no edge between nodes of the same color
Graph Coloring

- Recall bi-partite graphs

- We can “color” the nodes using 2 colors (which part they are in) so that no edge between nodes of the same color

- More generally, a coloring (using k colors) is valid if there is no edge between nodes of the same color

- k-coloring: a function \(c: V \rightarrow \{1, \ldots, k\} \) s.t. \(\forall x, y \in V \) \(\{x, y\} \in E \rightarrow c(x) \neq c(y) \)
Graph Coloring

Recall bi-partite graphs

We can “color” the nodes using 2 colors (which part they are in) so that no edge between nodes of the same color

More generally, a coloring (using k colors) is valid if there is no edge between nodes of the same color

k-coloring: a function $c: V \rightarrow \{1,..,k\}$ s.t. $\forall x,y \in V \{x,y\} \in E \rightarrow c(x) \neq c(y)$

The least number of colors possible in a valid coloring of G is called the Chromatic number of G, $\chi(G)$
Graph Coloring

- Recall bi-partite graphs

- We can “color” the nodes using 2 colors (which part they are in) so that no edge between nodes of the same color

- More generally, a coloring (using k colors) is valid if there is no edge between nodes of the same color

- k-coloring: a function $c: V \rightarrow \{1, \ldots, k\}$ s.t. $\forall x, y \in V \ \{x, y\} \in E \rightarrow c(x) \neq c(y)$

- The least number of colors possible in a valid coloring of G is called the Chromatic number of G, $\chi(G)$

- G has a k-coloring $\iff \chi(G) \leq k$
Graph Coloring

- Recall bi-partite graphs

- We can “color” the nodes using 2 colors (which part they are in) so that no edge between nodes of the same color.

- More generally, a coloring (using k colors) is valid if there is no edge between nodes of the same color.

- k-coloring: a function $c: V \rightarrow \{1, \ldots, k\}$ s.t. $\forall x, y \in V \{x, y\} \in E \rightarrow c(x) \neq c(y)$.

- The least number of colors possible in a valid coloring of G is called the Chromatic number of G, $\chi(G)$.

- G has a k-coloring $\iff \chi(G) \leq k$.

 Upper-bounding $\chi(G)$
Graph Coloring
Graph Coloring

Suppose H is a subgraph of G. Then:
Graph Coloring

Suppose H is a subgraph of G. Then:

G has a k-coloring $\implies H$ has a k-coloring
Graph Coloring

Suppose H is a subgraph of G. Then:

- G has a k-coloring \rightarrow H has a k-coloring

i.e., $\chi(G) \geq \chi(H)$
Graph Coloring

Suppose H is a subgraph of G. Then:

- G has a k-coloring \rightarrow H has a k-coloring

i.e., $\chi(G) \geq \chi(H)$
Graph Coloring

Suppose H is a subgraph of G. Then:

- G has a k-coloring \rightarrow H has a k-coloring

 i.e., $\chi(G) \geq \chi(H)$

e.g., G has K_n as a subgraph \rightarrow $\chi(G) > n-1$ (i.e., $\chi(G) \geq n$)
Graph Coloring

Suppose H is a subgraph of G. Then:

- G has a k-coloring \rightarrow H has a k-coloring

 i.e., $\chi(G) \geq \chi(H)$

- e.g., G has K_n as a subgraph \rightarrow $\chi(G) > n-1$ (i.e., $\chi(G) \geq n$)

- e.g., G has C_n for odd n as a subgraph \rightarrow $\chi(G) > 2$
Graph Coloring

Suppose H is a subgraph of G. Then:

- G has a k-coloring $\rightarrow H$ has a k-coloring
 - i.e., $\chi(G) \geq \chi(H)$

- e.g., G has K_n as a subgraph $\rightarrow \chi(G) > n-1$ (i.e., $\chi(G) \geq n$)

- e.g., G has C_n for odd n as a subgraph $\rightarrow \chi(G) > 2$

Summary: One way to show $k_{lower} \leq \chi(G) \leq k_{upper}$
 - Show a coloring $c: V \rightarrow \{1, \ldots, k_{upper}\}$
 - And show a subgraph H with $k_{lower} \leq \chi(H)$
Complete Graph
Complete Graph

\[\chi(G) = |V| \iff G \text{ is isomorphic to } K_{|V|} \]
Complete Graph

\[\chi(G) = |V| \leftrightarrow G \text{ is isomorphic to } K_{|V|} \]

\[\leftarrow: \chi(K_n) = n \text{ and isomorphism preserves } \chi \text{ (exercise!)} \]
Complete Graph

\[\chi(G) = |V| \iff G \text{ is isomorphic to } K_{|V|} \]

\[\leftarrow: \chi(K_n) = n \text{ and isomorphism preserves } \chi \text{ (exercise!)} \]

\[\rightarrow: \text{We will prove the contrapositive: i.e., that if } G \text{ not isomorphic to } K_{|V|}, \text{ then } \chi(G) \neq |V|. \]
Complete Graph

\[\chi(G) = |V| \iff G \text{ is isomorphic to } K_{|V|} \]

\[\leftarrow: \chi(K_n) = n \text{ and isomorphism preserves } \chi \text{ (exercise!)} \]

\[\rightarrow: \text{We will prove the contrapositive: i.e., that if } G \text{ not isomorphic to } K_{|V|}, \text{ then } \chi(G) \neq |V|. \]

Suppose \(G \) not isomorphic to \(K_{|V|} \). So \(G \) should have at least two distinct nodes \(u, v \) s.t. \(\{u,v\} \notin E \). Consider the coloring which assigns colors \(\{1, \ldots, |V|-2\} \) to the nodes in \(V-\{u,v\} \) and the color \(|V|-1 \) to both \(u \) and \(v \). This is a valid coloring (because \(f(x)=f(y) \rightarrow \{x,y\} \notin E \)). So \(\chi(G) \leq |V|-1 \)
Graph Coloring
Graph Coloring

- The origins: map-making
Graph Coloring

The origins: map-making

“Graph”: one node for each country; an edge between countries which share a border
Graph Coloring

- The origins: map-making

 - “Graph”: one node for each country; an edge between countries which share a border

 - Neighboring countries shouldn’t have the same color. Use as few colors as possible.
Graph Coloring

The origins: map-making

“Graph”: one node for each country; an edge between countries which share a border

Neighboring countries shouldn’t have the same color. Use as few colors as possible.

Next time: $\chi(G) \leq \text{Max-degree}(G) + 1$ (proof by “induction”!)
Graph Coloring

The origins: map-making

“Graph”: one node for each country; an edge between countries which share a border

Neighboring countries shouldn’t have the same color. Use as few colors as possible.

Next time: $\chi(G) \leq \text{Max-degree}(G) + 1$ (proof by “induction”!)

Efficient algorithms known for coloring many special kinds of graphs with as few colors as possible
Graph Coloring

- The origins: map-making
 - "Graph": one node for each country; an edge between countries which share a border
 - Neighboring countries shouldn’t have the same color. Use as few colors as possible.

- Next time: $\chi(G) \leq \text{Max-degree}(G) + 1$ (proof by "induction"!)

- Efficient algorithms known for coloring many special kinds of graphs with as few colors as possible

- But computing chromatic number in general is believed to be "hard" (known to be in a class of problems called "NP-hard")
Graph Coloring in Action

Many problems can be modeled as a graph coloring problem.

Resource scheduling: allocate "resources" (e.g. time slots, radio frequencies) to "demands" (exams, radio stations). Use as few resources as possible. Same resource can be used to satisfy multiple demands, as long as they don’t have a "conflict" (same student, inhabited area with signal overlap).

Create a "conflict graph": Demands are the nodes; connect them by an edge if they have a conflict.

Color the graph with as few colors as possible.

Allocate one resource per color.
Shortest Paths in Action

- Obvious example: nodes correspond to locations on a map and edges are roads, optic fibers etc.

- Weighted edges: each edge has its own “length” (instead of 1)

- But also over more abstract graphs

- e.g., Graph-based models in AI/machine-learning for modeling probabilistic systems

 - e.g., a graph, modeling speech production: nodes correspond to various “states” the vocal chords/lips etc. could be in while producing a given a sound sequence. Edges show transitions (next state) over time. Shortest path in this graph gives the “most likely” word that was spoken.
Network Flow

- Transporting (people, material, data) over a network of links with limited capacity, and possibly cost for bandwidth use.

- A central problem in “Operations Research”.

- (Bipartite) Matching problem: pair up every node with one of its neighbors, so that no node is left alone or has more than one partner.

- “Max-flow Min-cut” theorem: can route as much flow from one node to another, as the smallest “cut” permits.

- Efficient algorithms known.

- More challenging when there are multiple flows to be routed together on the same network.
More graphs
More graphs

Used to keep data in an easy-to-search/manipulate fashion
More graphs

- Used to keep data in an easy-to-search/manipulate fashion

- **Data structures**: mainly, (balanced) “trees” of various kinds
More graphs

- Used to keep data in an easy-to-search/manipulate fashion
- **Data structures**: mainly, (balanced) “trees” of various kinds
- Graphs used to design networks of processors in a super-computer
More graphs

- Used to keep data in an easy-to-search/manipulate fashion

- **Data structures**: mainly, (balanced) “trees” of various kinds

- Graphs used to design networks of processors in a super-computer

- Design graphs with **low degree** (look at a few (neighboring) pieces of data at a time; reduce hardware cost), but **good “connectivity”** -- i.e., (possibly many) short paths between any two nodes (to reach the required piece of data quickly, by taking a path over the graph; to route data quickly)
More graphs

- Used to keep data in an easy-to-search/manipulate fashion
- **Data structures**: mainly, (balanced) “trees” of various kinds
- Graphs used to design networks of processors in a super-computer
- **Design** graphs with **low degree** (look at a few (neighboring) pieces of data at a time; reduce hardware cost), but **good “connectivity”** -- i.e., (possibly many) short paths between any two nodes (to reach the required piece of data quickly, by taking a path over the graph; to route data quickly)
- Very efficient algorithms known for relevant graph problems
More graphs

- Used to keep data in an easy-to-search/manipulate fashion
- **Data structures**: mainly, (balanced) “trees” of various kinds
- Graphs used to design networks of processors in a super-computer
- Design graphs with **low degree** (look at a few (neighboring) pieces of data at a time; reduce hardware cost), but good “connectivity” -- i.e., (possibly many) short paths between any two nodes (to reach the required piece of data quickly, by taking a path over the graph; to route data quickly)
- Very efficient algorithms known for relevant graph problems
 - e.g., breadth/depth-first search, shortest path algorithm...
More graphs

- Used to keep data in an easy-to-search/manipulate fashion

- **Data structures**: mainly, (balanced) "trees" of various kinds

- Graphs used to design networks of processors in a super-computer

- Design graphs with **low degree** (look at a few (neighboring) pieces of data at a time; reduce hardware cost), but **good "connectivity"** -- i.e., (possibly many) short paths between any two nodes (to reach the required piece of data quickly, by taking a path over the graph; to route data quickly)

- Very efficient algorithms known for relevant graph problems
 - e.g., breadth/depth-first search, shortest path algorithm...

- But many other graph problems are known to be "NP-hard"
More graphs

- Used to keep data in an easy-to-search/manipulate fashion
 - **Data structures**: mainly, (balanced) “trees” of various kinds
- Graphs used to design networks of processors in a super-computer
- Design graphs with **low degree** (look at a few (neighboring) pieces of data at a time; reduce hardware cost), but **good “connectivity”** -- i.e., (possibly many) short paths between any two nodes (to reach the required piece of data quickly, by taking a path over the graph; to route data quickly)
- Very efficient algorithms known for relevant graph problems
 - e.g., breadth/depth-first search, shortest path algorithm...
- But many other graph problems are known to be “NP-hard”
 - e.g., Traveling Salesperson Problem (TSP): visit all cities, by traveling the least distance
Mathematical Induction
Proof by Programming
Lecture 13
Programming a Proof
Let \(f(n) = \sum_{i=1}^{n} i^2 \) and \(g(n) = \frac{n(n+1)(2n+1)}{6} \)
Programming a Proof

Let \(f(n) = \sum_{i=1}^{n} i^2 \) and \(g(n) = \frac{n(n+1)(2n+1)}{6} \)

\(\forall n \in \mathbb{Z}^+, \quad f(n) = g(n) \)
Programming a Proof

Let \(f(n) = \sum_{i=1}^{n} i^2 \) and \(g(n) = \frac{n(n+1)(2n+1)}{6} \)

\(\forall n \in \mathbb{Z}^+, \ f(n) = g(n) \)

\(f(1) = 1, \quad g(1) = 1 \) ✔
Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, \ f(n) = g(n)$

- $f(1) = 1, \ g(1) = 1 \ \checkmark$
- $f(2) = 5, \ g(2) = 5 \ \checkmark$

Programming a Proof
Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, \ f(n) = g(n)$

- $f(1) = 1, \ g(1) = 1$ ✔
- $f(2) = 5, \ g(2) = 5$ ✔
- $f(3) = 14, \ g(3) = 14$ ✔

Programming a Proof
Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, \ f(n) = g(n)$

- $f(1) = 1, \ g(1) = 1 \quad \checkmark$
- $f(2) = 5, \ g(2) = 5 \quad \checkmark$
- $f(3) = 14, \ g(3) = 14 \quad \checkmark$
- But we need to check this for all n...
Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, \ f(n) = g(n)$

- $f(1) = 1, \ g(1) = 1 \ ✔$
- $f(2) = 5, \ g(2) = 5 \ ✔$
- $f(3) = 14, \ g(3) = 14 \ ✔$

But we need to check this for all n...

To the rescue: mathematical induction
Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, f(n) = g(n)$

- $f(1) = 1, \quad g(1) = 1$ ✔
- $f(2) = 5, \quad g(2) = 5$ ✔
- $f(3) = 14, \quad g(3) = 14$ ✔

But we need to check this for all n...

To the rescue: mathematical induction

No need to explicitly write down such a proof. Enough to prove that an explicit proof exists!
Let \(f(n) = \sum_{i=1}^{n} i^2 \) and \(g(n) = \frac{n(n+1)(2n+1)}{6} \)

\(\forall n \in \mathbb{Z}^+ \), \(f(n) = g(n) \)

\(f(1) = 1, \quad g(1) = 1 \quad \checkmark \)
\(f(2) = 5, \quad g(2) = 5 \quad \checkmark \)
\(f(3) = 14, \quad g(3) = 14 \quad \checkmark \)

But we need to check this for all \(n \)...

To the rescue: mathematical induction

No need to explicitly write down such a proof. Enough to prove that an explicit proof exists!

Describe a procedure that can generate the proof for each \(n \)
A Funny ATM
A Funny ATM
A Funny ATM

Give it a $1 bill, it gives you a $2 bill (it is a funny ATM..) In fact, give it an n bill, it gives you an $(n+1)$ bill ($n \geq 1$)
A Funny ATM

Give it a $1 bill, it gives you a $2 bill (it is a funny ATM..)
In fact, give it an n bill, it gives you an $(n+1)$ bill ($n \geq 1$)

How do you get a 100 bill out of this ATM?
A Funny ATM

- Give it a $1 bill, it gives you a $2 bill (it is a funny ATM..)
- In fact, give it an n bill, it gives you an $(n+1)$ bill ($n \geq 1$)

How do you get a 100 bill out of this ATM?

- Give it a 99 bill.
A Funny ATM

- Give it a $1 bill, it gives you a $2 bill (it is a funny ATM..)
 In fact, give it an n bill, it gives you an $(n+1)$ bill ($n \geq 1$)

- How do you get a 100 bill out of this ATM?
 - Give it a 99 bill.

- But what if you don’t have one?
A Funny ATM

Give it a $1 bill, it gives you a $2 bill (it is a funny ATM..)
In fact, give it an n bill, it gives you an $(n+1)$ bill $(n \geq 1)$

How do you get a 100 bill out of this ATM?

Give it a 99 bill.

But what if you don’t have one?

Get it from the ATM by feeding it a 98 bill. And if you don’t have a 98 bill, get that from the ATM... Enough to start with a 1 bill!
A Funny ATM

Give it a $1 bill, it gives you a $2 bill (it is a funny ATM..)
In fact, give it an n bill, it gives you an $(n+1)$ bill ($n\geq 1$)

How do you get a 100 bill out of this ATM?

- Give it a 99 bill.

- But what if you don’t have one?

 Get it from the ATM by feeding it a 98 bill. And if you don’t have a 98 bill, get that from the ATM... Enough to start with a 1 bill!

To get a 100 bill, you need two things: some smaller bill (1 would do) and the funny ATM
A Proof in Two Acts
A Proof in Two Acts

Let \(f(n) = \sum_{i=1}^{n} i^2 \) and \(g(n) = \frac{n(n+1)(2n+1)}{6} \)
A Proof in Two Acts

1. Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

2. $\forall n \in \mathbb{Z}^+, \quad f(n) = g(n)$
A Proof in Two Acts

- Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$
- $\forall n \in \mathbb{Z}^+, \quad f(n) = g(n)$
- $f(1) = 1, \quad g(1) = 1 \quad \checkmark \quad (that\ is\ our\ \$1\ bill)$
A Proof in Two Acts

Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, \ f(n) = g(n)$

$f(1) = 1, \ g(1) = 1 \quad \checkmark \quad \text{(that is our$1 bill)}$
A Proof in Two Acts

Let \(f(n) = \sum_{i=1}^{n} i^2 \) and \(g(n) = \frac{n(n+1)(2n+1)}{6} \)

\(\forall n \in \mathbb{Z}^+, \ f(n) = g(n) \)

\(f(1) = 1, \ g(1) = 1 \) ✔ (that is our $1 bill)

What is the funny ATM?
A Proof in Two Acts

Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, \ f(n) = g(n)$

$f(1) = 1, \ g(1) = 1 \ \checkmark \ (\text{that is our$1 bill})$

What is the funny ATM?

$\forall n \in \mathbb{Z}^+, \ (f(n) = g(n)) \rightarrow (f(n+1) = g(n+1))$
A Proof in Two Acts

Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, \ f(n) = g(n)$

- $f(1) = 1$, $g(1) = 1$ ✔️ (that is our 1 bill)

What is the funny ATM?

- $\forall n \in \mathbb{Z}^+, \ (f(n) = g(n)) \rightarrow (f(n+1) = g(n+1))$

We need to build this ATM: i.e., prove this statement
A Proof in Two Acts

Let $f(n) = \sum_{i=1}^{n} i^2$ and $g(n) = \frac{n(n+1)(2n+1)}{6}$

$\forall n \in \mathbb{Z}^+, f(n) = g(n)$

- $f(1) = 1, \quad g(1) = 1 \quad \checkmark$ (that is our 1 bill)

What is the funny ATM?

$\forall n \in \mathbb{Z}^+, (f(n) = g(n)) \rightarrow (f(n+1) = g(n+1))$

We need to build this ATM: i.e., prove this statement

This is easier than proving the original statement
A Proof in Two Acts

Let \(f(n) = \sum_{i=1}^{n} i^2 \) and \(g(n) = \frac{n(n+1)(2n+1)}{6} \)

\(\forall n \in \mathbb{Z}^+, \ f(n) = g(n) \)

\(f(1) = 1, \ g(1) = 1 \) ✔ (that is our $1 bill)

What is the funny ATM?

\(\forall n \in \mathbb{Z}^+, \ (f(n) = g(n)) \rightarrow (f(n+1) = g(n+1)) \)

We need to build this ATM: i.e., prove this statement

This is easier than proving the original statement
Let \(f(n) = \sum_{i=1}^{n} i^2 \) and \(g(n) = n(n+1)(2n+1)/6 \)

\(\forall n \in \mathbb{Z^+}, \ f(n) = g(n) \)

\(f(1) = 1, \ g(1) = 1 \) ✔ (that is our $1 bill)

What is the funny ATM?

\(\forall n \in \mathbb{Z^+}, \ (f(n) = g(n)) \rightarrow (f(n+1) = g(n+1)) \)

We need to build this ATM: i.e., prove this statement

This is easier than proving the original statement

We also need to procure a $1 bill (we already did by proving \(f(1)=g(1) \))
Building the ATM
Building the ATM

The Induction Step
Building the ATM

To prove: \(\forall k \in \mathbb{Z}^+, \ (f(k) = g(k)) \rightarrow (f(k+1) = g(k+1)) \)
Building the ATM

To prove: $\forall k \in \mathbb{Z}^+, \ (f(k) = g(k)) \rightarrow (f(k+1) = g(k+1))$

Consider an arbitrary $k \in \mathbb{Z}^+$ s.t. $f(k) = g(k)$
To prove: \(\forall k \in \mathbb{Z}^+, \ (f(k) = g(k)) \rightarrow (f(k+1) = g(k+1)) \)

Consider an arbitrary \(k \in \mathbb{Z}^+ \) s.t. \(f(k) = g(k) \)

\[f(k+1) = f(k) + (k+1)^2 \]
\[= g(k) + (k+1)^2 \quad \text{By induction hypothesis} \]
\[= k(k+1)(2n+1)/6 + (k+1)^2 \]
Building the ATM

To prove: \(\forall k \in \mathbb{Z^+}, \ (f(k) = g(k)) \rightarrow (f(k+1) = g(k+1)) \)

Consider an arbitrary \(k \in \mathbb{Z^+} \) s.t. \(f(k) = g(k) \)

\[
f(k+1) = f(k) + (k+1)^2
\]

\[
= g(k) + (k+1)^2 \quad \text{By induction hypothesis}
\]

\[
= k(k+1)(2n+1)/6 + (k+1)^2
\]

Now some algebraic manipulation:

\[
f(k+1) = k(k+1)(2k+1)/6 + (k+1)^2 = (k+1) \left[\frac{2k^2 + k + 6k + 6}{6} \right]
\]

\[
g(k+1) = (k+1)(k+2)(2(k+1)+1)/6 = (k+1) \left[\frac{(k+2)(2k+3)}{6} \right]
\]
Building the ATM

To prove: \(\forall k \in \mathbb{Z}^+, \ (f(k) = g(k)) \rightarrow (f(k+1) = g(k+1)) \)

Consider an arbitrary \(k \in \mathbb{Z}^+ \) s.t. \(f(k) = g(k) \)

\[
f(k+1) = f(k) + (k+1)^2 = g(k) + (k+1)^2 \quad \text{By induction hypothesis}
\]

\[
= k(k+1)(2n+1)/6 + (k+1)^2
\]

Now some algebraic manipulation:

\[
f(k+1) = k(k+1)(2k+1)/6 + (k+1)^2 = (k+1) \left[2k^2 + k + 6k + 6 \right]/6
\]

\[
g(k+1) = (k+1)(k+2)(2(k+1)+1)/6 = (k+1) \left[(k+2)(2k+3) \right]/6
\]

\[
f(k+1) = g(k+1)
\]
Completing the proof
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \; P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \; P(k) \rightarrow P(k+1)$
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

<table>
<thead>
<tr>
<th></th>
<th>$P(1)$</th>
<th>$P(1) \rightarrow P(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P(2)$</td>
<td>$P(2) \rightarrow P(3)$</td>
</tr>
<tr>
<td></td>
<td>$P(3)$</td>
<td>$P(3) \rightarrow P(4)$</td>
</tr>
<tr>
<td></td>
<td>$P(4)$</td>
<td>$P(4) \rightarrow P(5)$</td>
</tr>
<tr>
<td></td>
<td>$P(5)$</td>
<td>$P(5) \rightarrow P(6)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

\[
\begin{array}{c|c}
P(1) & P(1) \rightarrow P(2) \\
P(2) & P(2) \rightarrow P(3) \\
P(3) & P(3) \rightarrow P(4) \\
P(4) & P(4) \rightarrow P(5) \\
P(5) & P(5) \rightarrow P(6) \\
\vdots & \\
\end{array}
\]
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$.

\[
\begin{array}{c|c}
P(1) & P(1) \rightarrow P(2) \\
P(2) & P(2) \rightarrow P(3) \\
P(3) & P(3) \rightarrow P(4) \\
P(4) & P(4) \rightarrow P(5) \\
P(5) & P(5) \rightarrow P(6) \\
\vdots & \\
\end{array}
\]
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

<table>
<thead>
<tr>
<th>$P(1)$</th>
<th>$P(1) \rightarrow P(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(2)$</td>
<td>$P(2) \rightarrow P(3)$</td>
</tr>
<tr>
<td>$P(3)$</td>
<td>$P(3) \rightarrow P(4)$</td>
</tr>
<tr>
<td>$P(4)$</td>
<td>$P(4) \rightarrow P(5)$</td>
</tr>
<tr>
<td>$P(5)$</td>
<td>$P(5) \rightarrow P(6)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

- First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

<table>
<thead>
<tr>
<th>$P(1)$</th>
<th>$P(1) \rightarrow P(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(2)$</td>
<td>$P(2) \rightarrow P(3)$</td>
</tr>
<tr>
<td>$P(3)$</td>
<td>$P(3) \rightarrow P(4)$</td>
</tr>
<tr>
<td>$P(4)$</td>
<td>$P(4) \rightarrow P(5)$</td>
</tr>
<tr>
<td>$P(5)$</td>
<td>$P(5) \rightarrow P(6)$</td>
</tr>
</tbody>
</table>

:\
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\lor</td>
<td>\lor</td>
<td>\lor</td>
<td>\lor</td>
<td>\lor</td>
<td>\lor</td>
<td>\lor</td>
</tr>
<tr>
<td>$P(1) \rightarrow P(2)$</td>
<td>$P(2) \rightarrow P(3)$</td>
<td>$P(3) \rightarrow P(4)$</td>
<td>$P(4) \rightarrow P(5)$</td>
<td>$P(5) \rightarrow P(6)$</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

- First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

<table>
<thead>
<tr>
<th>$P(n)$</th>
<th>\rightarrow</th>
<th>$P(n+1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(1)$</td>
<td>\wedge</td>
<td>$P(2)$</td>
</tr>
<tr>
<td>$P(2)$</td>
<td>\wedge</td>
<td>$P(3)$</td>
</tr>
<tr>
<td>$P(3)$</td>
<td>\wedge</td>
<td>$P(4)$</td>
</tr>
<tr>
<td>$P(4)$</td>
<td>\wedge</td>
<td>$P(5)$</td>
</tr>
<tr>
<td>$P(5)$</td>
<td>\wedge</td>
<td>$P(6)$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\wedge</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Completing the proof

To prove $\forall n \in \mathbb{Z}^+$ $P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+$ $P(k) \rightarrow P(k+1)$.

Mathematical Induction

The fact that for any n, we can run this procedure to generate a proof for $P(n)$, and hence for any n, $P(n)$ holds.
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$.

Mathematical Induction

The fact that for any n, we can run this procedure to generate a proof for $P(n)$, and hence for any n, $P(n)$ holds.
Completing the proof
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

- First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

Then by mathematical induction, $\forall n \in \mathbb{Z}^+ \ P(n)$
Completing the proof

To prove \(\forall n \in \mathbb{Z}^+ \ P(n) \):

- First, we prove \(P(1) \) and \(\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1) \)

- Then by mathematical induction, \(\forall n \in \mathbb{Z}^+ \ P(n) \)

Some other possibilities:
Completing the proof

- To prove $\forall n \in \mathbb{Z}^+ \quad P(n)$:
 - First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \quad P(k) \rightarrow P(k+1)$
 - Then by mathematical induction, $\forall n \in \mathbb{Z}^+ \quad P(n)$

- Some other possibilities:
 - Suppose the ATM takes an n bill and gives an $(n+2)$ bill
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

- First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

- Then by mathematical induction, $\forall n \in \mathbb{Z}^+ \ P(n)$

Some other possibilities:

- Suppose the ATM takes an $\$n$ bill and gives an $\$(n+2)$ bill
 - To get every possible bill, start with $\$1$ and $\$2$ bills
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

- First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

Then by mathematical induction, $\forall n \in \mathbb{Z}^+ \ P(n)$

Some other possibilities:

- Suppose the ATM takes an n bill and gives an $(n+2)$ bill
 - To get every possible bill, start with 1 and 2 bills
- Suppose the ATM doesn’t take bills under 5
Completing the proof

To prove $\forall n \in \mathbb{Z}^+ \ P(n)$:

- First, we prove $P(1)$ and $\forall k \in \mathbb{Z}^+ \ P(k) \rightarrow P(k+1)$

- Then by mathematical induction, $\forall n \in \mathbb{Z}^+ \ P(n)$

Some other possibilities:

- Suppose the ATM takes an n bill and gives an $(n+2)$ bill
 - To get every possible bill, start with 1 and 2 bills
- Suppose the ATM doesn’t take bills under 5
 - Print $1,...,5$ on your own. Use the ATM for the rest
Example
Example

∀n ∈ ℤ⁺ \hspace{2em} 3 \mid (2^{2n} - 1)
Example

∀ \(n \in \mathbb{Z}^+ \) \(3 \mid (2^{2n}-1) \)

Base case: \(n=1 \). \(2^{2 \cdot 1}-1 = 3 \), so \(3 \mid 2^{2 \cdot 1}-1 \)
Example

∀n∈Z⁺ 3 | (2^{2n}-1)

Base case: n=1. 2^{2·1}-1 = 3, so 3 | 2^{2·1}-1

Induction step: ∀k∈Z⁺ 3 | (2^{2k}-1) → 3 | (2^{2(k+1)}-1)
∀n ∈ ℤ⁺, 3 | (2ⁿ⁻¹)

Base case: n=1. 2¹⁻¹ = 3, so 3 | 2⁻¹

Induction step: ∀k ∈ ℤ⁺, 3 | (2ᵏ⁻¹) → 3 | (2ᵏ⁻¹)

2²(k+1)⁻¹ = 4.2²k⁻¹ = 4(2²k⁻¹) + 3

By induction hypothesis, 3 | 4(2²k⁻¹). Hence, 3 | (2²(k+1)⁻¹).
Example

∀n ∈ ℤ⁺ , 3 | (2^{2n} - 1)

Base case: n = 1. \(2^{2 \cdot 1} - 1 = 3\), so 3 | \(2^{2 \cdot 1} - 1\)

Induction step: ∀k ∈ ℤ⁺ , 3 | (2^{2k} - 1) → 3 | (2^{2(k+1)} - 1)

\(2^{2(k+1)} - 1 = 4 \cdot 2^{2k} - 1 = 4(2^{2k} - 1) + 3\)

By induction hypothesis, 3 | 4\(2^{2k} - 1\).
Hence, 3 | (2^{2(k+1)} - 1).

Hence (by weak induction), ∀n ∈ ℤ⁺ , 3 | (2^{2n} - 1)