Graphs
(And Review)
Lecture 11
Register your i>Clicker!

Exam

Bring your ID!

More preparation material: to be posted
Graph Isomorphism
Graph Isomorphism

$G_1 = (V_1,E_1)$ and $G_2 = (V_2,E_2)$ are isomorphic if there is a bijection $f: V_1 \rightarrow V_2$ such that $\{u,v\} \in E_1$ iff $\{f(u),f(v)\} \in E_2$
Graph Isomorphism

$G_1 = (V_1,E_1)$ and $G_2 = (V_2,E_2)$ are isomorphic if there is a bijection $f : V_1 \rightarrow V_2$ such that $\{u,v\} \in E_1$ iff $\{f(u),f(v)\} \in E_2$
Graph Isomorphism

$G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $f : V_1 \rightarrow V_2$ such that \{u,v\} $\in E_1$ iff \{f(u), f(v)\} $\in E_2$
Graph Isomorphism

$G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \to V_2$ such that $\{u, v\} \in E_1$ iff $\{f(u), f(v)\} \in E_2$.
Graph Isomorphism

\(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) are isomorphic if there is a bijection \(f: V_1 \rightarrow V_2 \) such that \(\{u,v\} \in E_1 \iff \{f(u), f(v)\} \in E_2 \)
Graph Isomorphism

$G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \rightarrow V_2$ such that $\{u,v\} \in E_1$ iff $\{f(u), f(v)\} \in E_2$
Graph Isomorphism

$G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \to V_2$ such that $\{u, v\} \in E_1$ iff $\{f(u), f(v)\} \in E_2$.
Graph Isomorphism

$G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \rightarrow V_2$ such that $\{u, v\} \in E_1$ iff $\{f(u), f(v)\} \in E_2$

Computational problem: check if two graphs (given as adjacency matrices) are isomorphic
Graph Isomorphism

$G_1 = (V_1,E_1)$ and $G_2 = (V_2,E_2)$ are isomorphic if there is a bijection $f: V_1 \rightarrow V_2$ such that $\{u,v\} \in E_1$ iff $\{f(u),f(v)\} \in E_2$

- Computational problem: check if two graphs (given as adjacency matrices) are isomorphic
- Can rule out if certain “invariants” are not preserved (e.g. $|V|,|E|$)
Graph Isomorphism

\[G_1 = (V_1, E_1) \text{ and } G_2 = (V_2, E_2) \text{ are isomorphic if there is a bijection } f: V_1 \rightarrow V_2 \text{ such that } \{u, v\} \in E_1 \text{ iff } \{f(u), f(v)\} \in E_2 \]

Computational problem: check if two graphs (given as adjacency matrices) are isomorphic

- Can rule out if certain “invariants” are not preserved (e.g. \(|V|, |E|\))
- In general, no “efficient” algorithm known, when graph is large
Graph Isomorphism

\[G_1 = (V_1, E_1) \text{ and } G_2 = (V_2, E_2) \text{ are isomorphic if there is a bijection } f: V_1 \rightarrow V_2 \text{ such that } \{u,v\} \in E_1 \text{ iff } \{f(u), f(v)\} \in E_2 \]

Computational problem: check if two graphs (given as adjacency matrices) are isomorphic

- Can rule out if certain “invariants” are not preserved (e.g. \(|V|, |E|\))
- In general, no “efficient” algorithm known, when graph is large
- Some believe no efficient algorithm “exists”
Degree of a node
Degree of a node

Given a simple graph $G = (V,E)$, for each node $v \in V$, the degree of v is the number of edges incident on v.
Degree of a node

Given a simple graph $G = (V,E)$, for each node $v \in V$, the degree of v is the number of edges incident on v.
Degree of a node

Given a simple graph $G = (V,E)$, for each node $v \in V$, the degree of v is the number of edges incident on v.

Formally, $\text{deg}(v) = | \{ u : \{u,v\} \in E \} |$.
Given a simple graph $G = (V,E)$, for each node $v \in V$, the degree of v is the number of edges incident on v.

Formally, $\deg(v) = | \{ u : \{u,v\} \in E \} |$.

Counting edges in two different ways: $2 \cdot |E| = \sum_{v \in V} \deg(v)$.
Degree of a node

- Given a simple graph $G = (V,E)$, for each node $v \in V$, the degree of v is the number of edges incident on v.

- Formally, $\text{deg}(v) = | \{ u : \{u,v\} \in E \} |$

- Counting edges in two different ways: $2 \cdot |E| = \sum_{v \in V} \text{deg}(v)$

- Degree sequence: sorted list of degrees. (e.g.: 0,1,2,2,3)
Degree of a node

Given a simple graph $G = (V,E)$, for each node $v \in V$, the degree of v is the number of edges incident on v

Formally, $\text{deg}(v) = | \{ u : \{u,v\} \in E \} |$

Counting edges in two different ways: $2 \cdot |E| = \sum_{v \in V} \text{deg}(v)$

Degree sequence: sorted list of degrees. (e.g.: 0,1,2,2,3)

Degree sequence invariant under isomorphism
Subgraphs
A subgraph of $G = (V,E)$ is a graph $G' = (V',E')$ such that $V' \subseteq V$ and $E' \subseteq E$
A subgraph of $G = (V,E)$ is a graph $G' = (V',E')$ such that $V' \subseteq V$ and $E' \subseteq E$.

Subgraphs
A subgraph of $G = (V,E)$ is a graph $G' = (V',E')$ such that $V' \subseteq V$ and $E' \subseteq E$
A subgraph of $G = (V,E)$ is a graph $G' = (V',E')$ such that $V' \subseteq V$ and $E' \subseteq E$.

If G_1 and G_2 are isomorphic, then every subgraph of G_1 is isomorphic to some subgraph of G_2.
Walks, Paths & Cycles
Walks, Paths & Cycles

- A **walk** (of length \(k, k \geq 0 \)) from node \(a \) to node \(b \) is a sequence of nodes \((v_0, v_1, \ldots, v_k) \) such that
A walk (of length k, $k \geq 0$) from node a to node b is a sequence of nodes (v_0, v_1, \ldots, v_k) such that

- $v_0 = a$, $v_k = b$
Walks, Paths & Cycles

A walk (of length k, $k \geq 0$) from node a to node b is a sequence of nodes (v_0, v_1, \ldots, v_k) such that

- $v_0 = a$, $v_k = b$
- for all $i \in \{0, \ldots, k-1\}$, the edge $\{v_i, v_{i+1}\} \in E$
Walks, Paths & Cycles

- A **walk** (of length k, $k \geq 0$) from node a to node b is a sequence of nodes (v_0, v_1, \ldots, v_k) such that
 - $v_0 = a$, $v_k = b$
 - for all $i \in \{0,\ldots,k-1\}$, the edge $\{v_i,v_{i+1}\} \in E$

- If a walk has no node repeating, then it is called a **path**
Walks, Paths & Cycles

- A **walk** (of length k, k ≥ 0) from node a to node b is a sequence of nodes (v₀, v₁, ..., vₖ) such that
 - v₀ = a, vₖ = b
 - for all i ∈ {0,...,k-1}, the edge {vᵢ, vᵢ₊₁} ∈ E

- If a walk has no node repeating, then it is called a **path**

- If a walk of length > 2 has v₀= vₖ, but no other two nodes are equal, then it is called a **cycle**
Walks, Paths & Cycles

- A **walk** (of length \(k, k \geq 0\)) from node \(a\) to node \(b\) is a sequence of nodes \((v_0, v_1, \ldots, v_k)\) such that
 - \(v_0 = a, v_k = b\)
 - For all \(i \in \{0, \ldots, k-1\}\), the edge \({v_i, v_{i+1}}\) \(\in E\)

- If a walk has no node repeating, then it is called a **path**

- If a walk of length \(> 2\) has \(v_0 = v_k\), but no other two nodes are equal, then it is called a **cycle**

- In a simple graph, a cycle is of length at least 3
Walks, Paths & Cycles

A **walk** (of length k, $k \geq 0$) from node a to node b is a sequence of nodes (v_0, v_1, \ldots, v_k) such that

- $v_0 = a$, $v_k = b$
- for all $i \in \{0, \ldots, k-1\}$, the edge $\{v_i, v_{i+1}\} \in E$

If a walk has no node repeating, then it is called a **path**

If a walk of length > 2 has $v_0 = v_k$, but no other two nodes are equal, then it is called a **cycle**

- In a simple graph, a cycle is of length at least 3

A graph is acyclic if it has no cycles (i.e., no C_k is a subgraph of G)
Connectivity
Connectivity

Given a graph G, whether there is a path between two nodes u and v is an important question regarding G.
Connectivity

Given a graph G, whether there is a path between two nodes u and v is an important question regarding G. u is said to be connected to v if there is such a path.
Connectivity

Given a graph G, whether there is a path between two nodes u and v is an important question regarding G.

- u is said to be connected to v if there is such a path.
- u connected to v iff there is a walk from u to v.
Connectivity

Given a graph G, whether there is a path between two nodes u and v is an important question regarding G. u is said to be connected to v if there is such a path. u connected to v iff there is a walk from u to v. Relation $\text{Connected}(u,v)$ is an equivalence relation.
Connectivity

Given a graph G, whether there is a path between two nodes u and v is an important question regarding G

- u is said to be connected to v if there is such a path
- u connected to v iff there is a walk from u to v

Relation $\text{Connected}(u,v)$ is an equivalence relation

- Reflexive, Symmetric and Transitive
Connectivity

Given a graph G, whether there is a path between two nodes u and v is an important question regarding G.

u is said to be connected to v if there is such a path.

u connected to v iff there is a walk from u to v.

Relation $\text{Connected}(u,v)$ is an equivalence relation.

Reflexive, Symmetric and Transitive.
Connectivity

Given a graph G, whether there is a path between two nodes u and v is an important question regarding G.

u is said to be connected to v if there is such a path.

u connected to v iff there is a walk from u to v.

Relation Connected(u,v) is an equivalence relation.

Reflexive, Symmetric and Transitive.

Equivalence classes of this relation are called the connected components of G.
Connectivity

Given a graph G, whether there is a path between two nodes u and v is an important question regarding G.

u is said to be connected to v if there is such a path.

u connected to v iff there is a walk from u to v.

Relation $\text{Connected}(u,v)$ is an equivalence relation.

- Reflexive,
- Symmetric and Transitive.

Equivalence classes of this relation are called the connected components of G.

Number of edges in the shortest path between u and v is called the distance between u and v.

Walks can be spliced together to get walks.
Logic, Sets, Relations, Functions
Review (continued)

Logic,
Sets,
Relations,
Functions
Question
Question

\(R \cup (S \cap T) = \)

A. \(\overline{R} \cap \overline{S} \cap \overline{T} \)

B. \((\overline{R} \cap \overline{S}) \cup (\overline{R} \cap \overline{T}) \)

C. \((\overline{R} \cup \overline{S}) \cap (\overline{R} \cup \overline{T}) \)

D. \(\overline{R} \cup (\overline{S} \cap \overline{T}) \)

E. None of the above
Question

\[\overline{R \cup (S \cap T)} = \]

A. \(\overline{R} \cap \overline{S} \cap \overline{T} \)
B. \((\overline{R} \cap \overline{S}) \cup (\overline{R} \cap \overline{T}) \)
C. \((\overline{R} \cup \overline{S}) \cap (\overline{R} \cup \overline{T}) \)
D. \(\overline{R} \cup (\overline{S} \cap \overline{T}) \)
E. None of the above
Question
For two sets S,T, which is a valid proof approach for showing that $S = T$

A. Suppose $x \in S$. Then argue $x \in T$.
B. Suppose $x \notin S$. Then argue $x \notin T$.
C. Either A or B
D. A & B together
E. None of the above
Reflexive:
All self-loops
Reflexive:
All self-loops

Irreflexive:
No self-loops
Reflexive:
All self-loops

Irreflexive:
No self-loops

Symmetric:
Only self-loops & bidirectional edges
Reflexive:
All self-loops

Irreflexive:
No self-loops

Symmetric:
Only self-loops & bidirectional edges

Anti-symmetric:
No bidirectional edges
Reflexive: All self-loops
Irreflexive: No self-loops
Symmetric: Only self-loops & bidirectional edges
Anti-symmetric: No bidirectional edges
Transitive: Path from a to b implies edge (a,b)
Reflexive:
All self-loops

Irreflexive:
No self-loops

Symmetric:
Only self-loops & bidirectional edges

Anti-symmetric:
No bidirectional edges

Transitive:
Path from a to b implies edge (a, b)

Equivalence:
Cliques, disconnected from each other
Reflexive: All self-loops
Irreflexive: No self-loops
Symmetric: Only self-loops & bidirectional edges
Anti-symmetric: No bidirectional edges
Transitive: Path from a to b implies edge (a,b)
Equivalence: Cliques, disconnected from each other
Partial Order: Reflexive, with no cycles
Reflexive: All self-loops
Irreflexive: No self-loops
Symmetric: Only self-loops & bidirectional edges
Anti-symmetric: No bidirectional edges
Transitive: Path from a to b implies edge (a,b)
Equivalence: Cliques, disconnected from each other
Partial Order: Reflexive, with no cycles
Strict partial Order: Irreflexive, with no cycles
Question

Find the wrong statement

A. $(\forall a, b \ a \sqsubseteq b) \rightarrow \sqsubseteq$ is an equivalence relation
B. $(\forall a, b \ \neg(a \sqsubseteq b)) \rightarrow \sqsubseteq$ is a partial order
C. if \sqsubseteq is a strict partial order, it is not a partial order
D. if \sqsubseteq is a linear order, it is a partial order
E. None of the above
Types of Functions
Types of Functions

- **Function**
 \(f: A \rightarrow B \). Every \(x \in A \) has exactly one image \(f(x) \)

- **Onto Function**: Every \(y \in B \) has at least one pre-image (\(x \) s.t. \(y = f(x) \))
 \[|\text{Im}(f)| = |B| \leq |A| \]

- **One-to-One function**: Every \(y \in B \) has at most one pre-image
 \[|\text{Im}(f)| = |A| \leq |B| \]

- **Bijection**: Every \(y \in B \) has exactly one pre-image
 \[|\text{Im}(f)| = |A| = |B| \]

- Strictly increasing/strictly decreasing functions are one-to-one

- **Function Composition**: \(g \circ f : \text{Dom}_f \rightarrow \text{CoDom}_g, \ g \circ f(x) = g(f(x)) \)

- **A one-to-one function** \(f \) is invertible: \(\exists g \text{ s.t. } g \circ f = \text{Id} \)

- **A bijection** \(f \) has a unique inverse \(f^{-1} \). \(f \) and \(f^{-1} \) are inverses of each other
Question

Below f: \(\mathbb{Z} \to \mathbb{Z} \) and g: \(\mathbb{Z} \to \mathbb{Z} \) defined as follows:

\[f(x) = 5x, \text{ and } g(x)=\lfloor x/5 \rfloor. \] Then:

A. \(f \circ g \) is identity over \(\mathbb{Z} \)

B. \(g \circ f \) is identity over \(\mathbb{Z} \)

C. \(f \circ g \) is not well-defined

D. \(g \circ f \) is not well-defined

E. None of the above
Below \(f: \mathbb{Z} \to \mathbb{Z} \) and \(g: \mathbb{Z} \to \mathbb{Z} \) defined as follows:

\[f(x) = 5x, \quad \text{and} \quad g(x) = \lfloor x/5 \rfloor. \]

Then:

A. \(f \circ g \) is identity over \(\mathbb{Z} \)

B. \(g \circ f \) is identity over \(\mathbb{Z} \)

C. \(f \circ g \) is not well-defined

D. \(g \circ f \) is not well-defined

E. None of the above
Question

Below $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as follows:

$f(x) = 5x$, and $g(x) = \lfloor x/5 \rfloor$. Then:

A. $f \circ g$ is identity over \mathbb{Z}
B. $g \circ f$ is identity over \mathbb{Z}
C. $f \circ g$ is not well-defined
D. $g \circ f$ is not well-defined
E. None of the above
Numb3rs
Review
Division

For any two integers \(a\) and \(b\), \(a \neq 0\), there is a unique quotient \(q\) and remainder \(r\), such that

\[b = q \cdot a + r, \quad \text{and} \quad 0 \leq r < |a| \]
Division

For any two integers a and b, $a \neq 0$, there is a unique quotient q and remainder r, such that $b = q \cdot a + r$, and $0 \leq r < |a|$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-14</td>
<td>-13</td>
<td>-12</td>
<td>-11</td>
<td>-10</td>
<td>-9</td>
<td>-8</td>
</tr>
<tr>
<td>-1</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

Example:
- $a = 7$
- $b = 11$
- $q = 1$, $r = 4$

Explanation:
- For $b = 11$ and $a = 7$,
- $11 = 1 \cdot 7 + 4$,
- Thus, $q = 1$, $r = 4$.

The table shows how the quotient and remainder are calculated for various values of b and a. The unique quotient and remainder are indicated by the highlighted cells.
Division

For any two integers a and b, $a \neq 0$, there is a unique quotient q and remainder r, such that $b = q \cdot a + r$, and $0 \leq r < |a|$.
Common Divisors & Multiples
Common Divisors & Multiples

Common Divisor: c is a common divisor of integers a and b if $c|a$ and $c|b$. [a.k.a. common factor]
Common Divisors & Multiples

Common Divisor: c is a common divisor of integers a and b if $c|a$ and $c|b$. [a.k.a. common factor]

Common Multiple: c is a common multiple of a and b if $a|c$ and $b|c$.
Common Divisors & Multiples

- **Common Divisor**: c is a common divisor of integers a and b if $c|a$ and $c|b$. [a.k.a. common factor]

- **Common Multiple**: c is a common multiple of a and b if $a|c$ and $b|c$.

- **Greatest Common Divisor** (for $(a,b) \neq (0,0)$)

 $\text{gcd}(a,b) =$ largest among common divisors of a and b.

 Smallest positive number d s.t. $\exists u,v \in \mathbb{Z} \quad d = ua + vb$
Common Divisors & Multiples

- **Common Divisor:** c is a common divisor of integers a and b if $c|a$ and $c|b$. [a.k.a. common factor]

- **Common Multiple:** c is a common multiple of a and b if $a|c$ and $b|c$.

- **Greatest Common Divisor (for $(a,b) \neq (0,0)$):**

 $\text{gcd}(a,b) = \text{largest among common divisors of } a \text{ and } b$.

 Smallest positive number d s.t. $\exists u, v \in \mathbb{Z}$, $d = ua + vb$

- **Coprimes:** $\gcd(a,b)=1$
Common Divisors & Multiples

Common Divisor: c is a common divisor of integers a and b if c|a and c|b. [a.k.a. common factor]

Common Multiple: c is a common multiple of a and b if a|c and b|c.

Greatest Common Divisor (for (a,b)≠(0,0))

gcd(a,b) = largest among common divisors of a and b.

Smallest positive number d s.t. \(\exists u,v \in \mathbb{Z} \) \(d = ua + vb \)

\(d \mid (ua + vb) \)

coprimes:

\(\gcd(a,b)=1 \)
Common Divisors & Multiples

Common Divisor: c is a common divisor of integers a and b if \(c \mid a \) and \(c \mid b \). [a.k.a. common factor]

Common Multiple: c is a common multiple of a and b if \(a \mid c \) and \(b \mid c \).

Greatest Common Divisor (for \((a,b) \neq (0,0) \))
\[
\gcd(a, b) = \text{largest among common divisors of } a \text{ and } b.
\]
Smallest positive number d s.t. \(\exists u, v \in \mathbb{Z} \) \(d = ua + vb \)

Least Common Multiple (for \(a \neq 0 \) and \(b \neq 0 \))
\[
\text{lcm}(a, b) = \text{smallest positive integer among the common multiples of } a \text{ and } b
\]
Common Divisors & Multiples

Common Divisor: c is a common divisor of integers a and b if c|a and c|b. [a.k.a. common factor]

Common Multiple: c is a common multiple of a and b if a|c and b|c.

Greatest Common Divisor (for (a,b)≠(0,0))
\[\gcd(a,b) = \text{largest among common divisors of } a \text{ and } b. \]
Smallest positive number d s.t. \(\exists u, v \in \mathbb{Z} \) \(d = ua + vb \)

Least Common Multiple (for a≠0 and b≠0)
\[\text{lcm}(a,b) = \text{smallest positive integer among the common multiples of } a \text{ and } b \]

\[\gcd(a,b) \cdot \text{lcm}(a,b) = |a \cdot b| \quad [\text{Why?}] \]
Congruence

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-14</td>
<td>-13</td>
<td>-12</td>
<td>-11</td>
<td>-10</td>
<td>-9</td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>modulus=7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
For a “modulus” m and two integers p and q, we say $p \equiv q \pmod{m}$ if $m \mid (p-q)$.

<table>
<thead>
<tr>
<th></th>
<th>-14</th>
<th>-13</th>
<th>-12</th>
<th>-11</th>
<th>-10</th>
<th>-9</th>
<th>-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

modulus=7
Congruence

For a “modulus” \(m \) and two integers \(p \) and \(q \), we say \(p \equiv q \pmod{m} \) if \(m \mid (p-q) \).

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
<td>14</td>
<td>7</td>
<td>14</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>15</td>
<td>8</td>
<td>15</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>16</td>
<td>9</td>
<td>16</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>17</td>
<td>10</td>
<td>17</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>18</td>
<td>11</td>
<td>18</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>19</td>
<td>12</td>
<td>19</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>20</td>
<td>13</td>
<td>20</td>
<td>13</td>
<td>20</td>
</tr>
</tbody>
</table>

Distance between \(p \) and \(q \) on the same column is a multiple of \(m \).
Congruence

For a “modulus” m and two integers p and q, we say \(p \equiv q \pmod{m} \) if \(m \mid (p-q) \).

Example:

For modulus 7, the numbers 4 and 11 are congruent because their difference is a multiple of 7.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

Note:
- The numbers on the same column are congruent modulo 7.
- The distance between two numbers is a multiple of 7.

Modulus = 7
Congruence

For a “modulus” m and two integers p and q, we say \(p \equiv q \pmod{m} \) if \(m \mid (p-q) \).

\[
\begin{array}{cccccccc}
14 & 15 & 16 & 17 & 18 & 19 & 20 \\
7 & 8 & 9 & 10 & 11 & 12 & \\
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

modulus=7

\(11 \equiv 18 \pmod{7} \)

p&q on same column: distance between p&q is a multiple of m
Congruence

For a “modulus” m and two integers p and q, we say $p \equiv q \pmod{m}$ if $m | (p - q)$.

p and q on the same column: distance between p and q is a multiple of m.

- $11 \equiv 18 \pmod{7}$
- $11 \equiv -10 \pmod{7}$
For a "modulus" \(m \) and two integers \(p \) and \(q \), we say \(p \equiv q \pmod{m} \) if \(m \mid (p-q) \).

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

- \(11 \equiv 18 \pmod{7} \)
- \(11 \equiv -10 \pmod{7} \)

Each column is an equivalence class of the relation \(\equiv \pmod{m} \).

- \(p \& q \) on the same column: distance between \(p \& q \) is a multiple of \(m \).
Modular Arithmetic

\([a]_m : \) the set of all elements \(x \), s.t. \(a \equiv x \pmod{m} \)

Modular addition: \([a]_m +_m [b]_m \triangleq [a+b]_m \)

Modular multiplication: \([a]_m \times_m [b]_m \triangleq [a \cdot b]_m \)

Multiplicative Inverse! \(a \) has a multiplicative inverse modulo \(m \) iff \(a \) is co-prime with \(m \).

\(\gcd(a,m)=1 \iff \exists u,v \ au+mv=1 \iff \exists u \ [a]_m \times_m [u]_m = [1]_m \)

\(\exists u \ [2]_9 \times_9 [5]_9 = [1]_9 \) so \([2]_9^{-1} = [5]_9 \) and \([5]_9^{-1} = [2]_9 \)

For a prime modulus \(p \), all except \([0]_p \) have inverses!
Question
Let $a = 31^3 + 374 \times 12 + 5 \times 121$. Then

A. $a \equiv 0 \pmod{3}$
B. $a \equiv 1 \pmod{3}$
C. $a \equiv 2 \pmod{3}$
D. None of the above
Let \(a = 31^3 + 374 \times 12 + 5 \times 121 \). Then

A. \(a \equiv 0 \pmod{3} \)
B. \(a \equiv 1 \pmod{3} \)
C. \(a \equiv 2 \pmod{3} \)
D. None of the above

\[\equiv 1^3 + 0 + 2 \times 1 \pmod{3} \]
Question
Let $a = 11^7$

A. $a \equiv 0 \pmod{12}$
B. $a \equiv 1 \pmod{12}$
C. $a \equiv 7 \pmod{12}$
D. $a \equiv 11 \pmod{12}$
E. None of the above
Question

Let $a = 11^7$

A. $a \equiv 0 \pmod{12}$
B. $a \equiv 1 \pmod{12}$
C. $a \equiv 7 \pmod{12}$
D. $a \equiv 11 \pmod{12}$
E. None of the above

$(-1)^7 \equiv -1 \pmod{12}$