Functions

Lecture 9
A function maps each element in the domain to an element in the co-domain.

Example: \(f : \text{A} \times \text{I} \rightarrow \{0,1,2,3,4,5\} \)
Composition

Composition of two functions f and g: $g \circ f$

$g \circ f(x) \equiv g(f(x))$
Composition

Composition of two functions f and g: $g \circ f$

$g \circ f(x) = g(f(x))$

$g \circ f : \text{Domain}(f) \rightarrow \text{Co-domain}(g)$
Composition

Composition of two functions f and g: $g \circ f$

$g \circ f(x) \triangleq g(f(x))$

$g \circ f : \text{Domain}(f) \rightarrow \text{Co-domain}(g)$
Types of Functions

- **$f(x) = x$**
- **$f(x) = |x/5|$**
- **$f(x) = 5x$**
- **$f(x) = x^2$**
Types of Functions

- Function: every column has exactly one cell “on”
- Onto Function (surjection): Every row has at least one cell “on”
- One-to-One function (injection): Every row has at most one cell “on”
- Bijection: Every row has exactly one cell “on”
One-to-One Functions
One-to-One Functions

A function $f:A \rightarrow B$ is one-to-one if $\forall x, x' \in A \ f(x) = f(x') \rightarrow x = x'$
One-to-One Functions

A function $f: A \rightarrow B$ is one-to-one if $\forall x, x' \in A \quad f(x) = f(x') \rightarrow x = x'$

e.g. $f : \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = x^2$ is not one-to-one
One-to-One Functions

A function $f: A \rightarrow B$ is one-to-one if $\forall x, x' \in A \; f(x) = f(x') \rightarrow x = x'$

e.g. $f : \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = x^2$ is not one-to-one

e.g. $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ defined as $f(x) = x^2$ is one-to-one
A function $f: A \rightarrow B$ is one-to-one if $\forall x, x' \in A \ f(x) = f(x') \rightarrow x = x'$

e.g. $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = x^2$ is not one-to-one

e.g. $f: \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ defined as $f(x) = x^2$ is one-to-one

e.g. $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = \lfloor x/5 \rfloor$ is not one-to-one
One-to-One Functions

A function \(f: A \to B \) is one-to-one if \(\forall x, x' \in A \quad f(x) = f(x') \rightarrow x = x' \)

- e.g. \(f : \mathbb{Z} \to \mathbb{Z} \) defined as \(f(x) = x^2 \) is not one-to-one
 - e.g. \(f : \mathbb{Z}^+ \to \mathbb{Z}^+ \) defined as \(f(x) = x^2 \) is one-to-one
 - e.g. \(f : \mathbb{Z} \to \mathbb{Z} \) defined as \(f(x) = \lfloor x/5 \rfloor \) is not one-to-one
 - e.g. \(f : \mathbb{Z} \to \mathbb{Z} \) defined as \(f(x) = 5x \) is one-to-one
One-to-One Functions

A function $f: A \to B$ is one-to-one if $\forall x, x' \in A \quad f(x) = f(x') \rightarrow x = x'$

e.g. $f : \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = x^2$ is not one-to-one

e.g. $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ defined as $f(x) = x^2$ is one-to-one

e.g. $f : \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = \lfloor x/5 \rfloor$ is not one-to-one

e.g. $f : \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = 5x$ is one-to-one
One-to-One Functions

A function $f: A \rightarrow B$ is one-to-one if $\forall x, x' \in A \ f(x) = f(x') \rightarrow x = x'$

e.g. $f : \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = x^2$ is not one-to-one

e.g. $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ defined as $f(x) = x^2$ is one-to-one

e.g. $f : \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = \lfloor x/5 \rfloor$ is not one-to-one

e.g. $f : \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = 5x$ is one-to-one

In fact, any strictly increasing function is one-to-one
One-to-One Functions

A function \(f: A \rightarrow B \) is one-to-one if \(\forall x, x' \in A \ f(x) = f(x') \rightarrow x = x' \)

e.g. \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) defined as \(f(x) = x^2 \) is not one-to-one

e.g. \(f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) defined as \(f(x) = x^2 \) is one-to-one

\(f(x) = 5x \) is one-to-one

In fact, any strictly increasing function is one-to-one

And, any strictly decreasing function too is one-to-one
Question

Below $f: \mathbb{Z} \to \mathbb{Z}$. Pick the right choice.

A. f s.t. $f(x)=\lfloor x/5 \rfloor$ is increasing, but not one-to-one
B. f s.t. $f(x) = x + |x|$ is increasing and one-to-one
C. f s.t. $f(x)=1$ is neither increasing nor one-to-one
D. f is one-to-one \rightarrow f is increasing or decreasing
E. None of the above
Question

Below f: \(\mathbb{Z} \rightarrow \mathbb{Z} \). Pick the right choice.

A. f s.t. \(f(x) = \lfloor x/5 \rfloor \) is increasing, but not one-to-one
B. f s.t. \(f(x) = x + |x| \) is increasing and one-to-one
C. f s.t. \(f(x) = 1 \) is neither increasing nor one-to-one
D. f is one-to-one \(\rightarrow \) f is increasing or decreasing
E. None of the above
One-to-One Functions
One-to-One Functions

One-to-one functions are “invertible”
One-to-One Functions

One-to-one functions are "invertible"

\[f \text{ invertible: } \exists g \text{ s.t. } g \circ f \equiv \text{Id} \]
One-to-One Functions

One-to-one functions are “invertible”

Suppose $f: A \to B$ is one-to-one
One-to-One Functions

- One-to-one functions are "invertible"
- Suppose $f: A \rightarrow B$ is one-to-one

f invertible: $\exists g \text{ s.t. } g \circ f \equiv \text{Id}$
One-to-One Functions

One-to-one functions are "invertible"

Suppose $f: A \rightarrow B$ is one-to-one

Let $g: B \rightarrow A$ be defined as follows:
- for $y \in \text{Im}(f)$, $g(y) = x$ s.t. $f(x) = y$ (well-defined)
- for $y \notin \text{Im}(f)$, $g(y) = 0$ (or some arbitrary element in A)

f invertible: $\exists g \text{ s.t. } g \circ f \equiv \text{Id}$
One-to-One Functions

One-to-one functions are “invertible”

Suppose \(f: A \rightarrow B \) is one-to-one

Let \(g: B \rightarrow A \) be defined as follows:
- for \(y \in \text{Im}(f) \), \(g(y) = x \) s.t. \(f(x) = y \) (well-defined)
- for \(y \notin \text{Im}(f) \), \(g(y) = 0 \) (or some arbitrary element in \(A \))

\(\forall y \in \text{Im}(f) \exists ! x \in A \) \(f(x) = y \)

\(f \) invertible:
\(\exists g \) s.t. \(g \circ f \equiv \text{Id} \)
One-to-One Functions

One-to-one functions are "invertible"

Suppose $f: A \rightarrow B$ is one-to-one

Let $g: B \rightarrow A$ be defined as follows:

for $y \in \text{Im}(f)$, $g(y) = x$ s.t. $f(x) = y$ (well-defined)

for $y \notin \text{Im}(f)$, $g(y) = 0$ (or some arbitrary element in A)

f invertible: $\exists g$ s.t. $g \circ f \equiv \text{Id}$

$\forall y \in \text{Im}(f) \exists! x \in A \ f(x) = y$
One-to-One Functions

One-to-one functions are “invertible”

Suppose $f : A \rightarrow B$ is one-to-one

Let $g : B \rightarrow A$ be defined as follows:
- for $y \in \text{Im}(f)$, $g(y) = x$ s.t. $f(x) = y$ (well-defined)
- for $y \notin \text{Im}(f)$, $g(y) = 0$ (or some arbitrary element in A)

f invertible: \[\exists g \text{ s.t. } g \circ f = \text{Id} \]

\[\forall y \in \text{Im}(f) \ \exists! x \in A \quad f(x) = y \]

[ETPT]
One-to-One Functions

One-to-one functions are "invertible"

Suppose \(f: A \rightarrow B \) is one-to-one

Let \(g: B \rightarrow A \) be defined as follows:
for \(y \in \text{Im}(f) \), \(g(y) = x \) s.t. \(f(x) = y \) (well-defined)
for \(y \notin \text{Im}(f) \), \(g(y) = 0 \) (or some arbitrary element in \(A \))

Then \(g \circ f \equiv \text{Id}_A \), where \(\text{Id}_A: A \rightarrow A \) is the identity function over \(A \)

\[\forall y \in \text{Im}(f) \exists ! x \in A \quad f(x) = y \]

\[f \text{ invertible: } \exists g \text{ s.t. } g \circ f \equiv \text{Id} \]
One-to-One Functions

- One-to-one functions are "invertible"
- Suppose \(f: A \to B \) is one-to-one
- Let \(g: B \to A \) be defined as follows:
 - for \(y \in \text{Im}(f) \), \(g(y) = x \) s.t. \(f(x) = y \) (well-defined)
 - for \(y \notin \text{Im}(f) \), \(g(y) = 0 \) (or some arbitrary element in \(A \))
- Then \(g \circ f \equiv \text{Id}_A \), where \(\text{Id}_A: A \to A \) is the identity function over \(A \)
- If \(\text{Im}(f) \subset B \), then \(f \circ g \not\equiv \text{Id}_B \)

\(f \) invertible:
\[\exists g \text{ s.t. } g \circ f \equiv \text{Id} \]

\[\forall y \in \text{Im}(f) \exists ! x \in A \quad f(x) = y \]
One-to-One Functions

-One-to-one functions are "invertible"

Suppose \(f: A \to B \) is one-to-one

Let \(g: B \to A \) be defined as follows:

- For \(y \in \text{Im}(f) \), \(g(y) = x \) s.t. \(f(x) = y \) (well-defined)
- For \(y \notin \text{Im}(f) \), \(g(y) = 0 \) (or some arbitrary element in \(A \))

Then \(g \circ f \equiv \text{Id}_A \), where \(\text{Id}_A: A \to A \) is the identity function over \(A \)

If \(\text{Im}(f) \subset B \), then \(f \circ g \not\equiv \text{Id}_B \)

\(g \) not one-to-one \(\rightarrow \) \(g \) not invertible
One-to-One Functions

One-to-one functions are “invertible”

Suppose $f: A \to B$ is one-to-one

Let $g: B \to A$ be defined as follows:

- For $y \in \text{Im}(f)$, $g(y) = x$ s.t. $f(x) = y$ (well-defined)
- For $y \not\in \text{Im}(f)$, $g(y) = 0$ (or some arbitrary element in A)

Then $g \circ f \equiv \text{Id}_A$, where $\text{Id}_A: A \to A$ is the identity function over A

If $\text{Im}(f) \subseteq B$, then $f \circ g \not\equiv \text{Id}_B$

g not one-to-one \to g not invertible

f invertible: $\exists g$ s.t. $g \circ f \equiv \text{Id}$

$\forall y \in \text{Im}(f) \exists ! x \in A \ f(x) = y$

g invertible \to g one-to-one

Suppose $h \circ g \equiv \text{Id}$

$g(x_1) = g(x_2) \to h(g(x_1)) = h(g(x_2)) \to x_1 = x_2$ (since $h \circ g \equiv \text{Id}$)

i.e., $\forall x_1, x_2 \ g(x_1) = g(x_2) \to x_1 = x_2$
Below $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as follows:

$f(x) = 5x$, and $g(x) = \lfloor x/5 \rfloor$. Then:

A. $f \circ g$ is identity over \mathbb{Z}
B. $g \circ f$ is identity over \mathbb{Z}
C. $f \circ g$ is not well-defined
D. $g \circ f$ is not well-defined
E. None of the above
Question

Below $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ defined as follows:

$f(x) = 5x$, and $g(x) = \lfloor x/5 \rfloor$. Then:

A. $f \circ g$ is identity over \mathbb{Z}
B. $g \circ f$ is identity over \mathbb{Z}
C. $f \circ g$ is not well-defined
D. $g \circ f$ is not well-defined
E. None of the above
Question

Below f: \(\mathbb{Z} \to \mathbb{Z} \) and g: \(\mathbb{Z} \to \mathbb{Z} \) defined as follows:

\[f(x) = 5x, \quad \text{and} \quad g(x) = \lfloor x/5 \rfloor. \]

Then:

A. \(f \circ g \) is identity over \(\mathbb{Z} \)
B. \(g \circ f \) is identity over \(\mathbb{Z} \)
C. \(f \circ g \) is not well-defined
D. \(g \circ f \) is not well-defined
E. None of the above
Bijections
Bijections

They are totally awesome!
Bijections

They are totally awesome!

Bijection: both onto (surjection) and one-to-one (injection)
Bijections

They are totally awesome!

Bijection: both onto (surjection) and one-to-one (injection)

- Every row and every column has exactly one cell “on”
Bijections

- They are totally awesome!
- **Bijection**: both onto (surjection) and one-to-one (injection)
 - Every row and every column has exactly one cell “on”
 - Every element in the co-domain has exactly one “pre-image”
Bijections

- They are totally awesome!
- **Bijection**: both onto (surjection) and one-to-one (injection)
 - Every row and every column has exactly one cell “on”
 - Every element in the co-domain has exactly one “pre-image”
Bijections

- They are totally awesome!
- **Bijection**: both onto (surjection) and one-to-one (injection)
 - Every row and every column has exactly one cell “on”
 - Every element in the co-domain has exactly one “pre-image”
Bijections

- They are totally awesome!
- **Bijection**: both onto (surjection) and one-to-one (injection)
 - Every row and every column has exactly one cell “on”
 - Every element in the co-domain has exactly one “pre-image”
- If $f: A \rightarrow B$, $f^{-1}: B \rightarrow A$ such that
 $f^{-1} \circ f: A \rightarrow A$ and $f \circ f^{-1}: B \rightarrow B$
Bijections

They are totally awesome!

Bijection: both onto (surjection) and one-to-one (injection)

* Every row and every column has exactly one cell “on”
* Every element in the co-domain has exactly one “pre-image”

If $f:A \rightarrow B$, $f^{-1}:B \rightarrow A$ such that

$\circ f: A \rightarrow A$ and $f \circ f^{-1}: B \rightarrow B$

* Both f and f^{-1} are invertible, and the inverses are unique
Bijections

They are totally awesome!

Bijection: both onto (surjection) and one-to-one (injection)

- Every row and every column has exactly one cell “on”
- Every element in the co-domain has exactly one “pre-image”

If \(f: A \to B \), \(f^{-1}: B \to A \) such that
\(f^{-1} \circ f: A \to A \) and \(f \circ f^{-1}: B \to B \)

- Both \(f \) and \(f^{-1} \) are invertible, and the inverses are unique
- \((f^{-1})^{-1} = f \)
Bijections

They are totally awesome!

Bijection: both onto (surjection) and one-to-one (injection)

- Every row and every column has **exactly** one cell “on”
- Every element in the co-domain has exactly one “pre-image”

If $f: A \rightarrow B$, $f^{-1}: B \rightarrow A$ such that $f^{-1} \circ f: A \rightarrow A$ and $f \circ f^{-1}: B \rightarrow B$

Both f and f^{-1} are invertible, and the inverses are unique

$(f^{-1})^{-1} = f$

If A, B **finite** sets and there is a bijection $f: A \rightarrow B$, then $|A| = |B|$
Bijections

They are totally awesome!

Bijection: both onto (surjection) and one-to-one (injection)

- Every row and every column has exactly one cell “on”
- Every element in the co-domain has exactly one “pre-image”

If \(f : A \to B \), \(f^{-1} : B \to A \) such that

\[f^{-1} \circ f : A \to A \] and \(f \circ f^{-1} : B \to B \)

Both \(f \) and \(f^{-1} \) are invertible, and the inverses are unique

\((f^{-1})^{-1} = f \)

If \(A, B \) finite sets and there is a bijection \(f : A \to B \), then \(|A| = |B| \)

If \(A, B \) finite and \(|A| = |B| \), then there is a bijection from \(A \) to \(B \)
Bijections

They are totally awesome!

Bijection: both onto (surjection) and one-to-one (injection)

- Every row and every column has **exactly** one cell “on”
- Every element in the co-domain has exactly one “pre-image”

If \(f: A \rightarrow B \), \(f^{-1}: B \rightarrow A \) such that
 \(f^{-1} \circ f: A \rightarrow A \) and \(f \circ f^{-1}: B \rightarrow B \)

Both \(f \) and \(f^{-1} \) are invertible, and the inverses are unique

\((f^{-1})^{-1} = f \)

If \(A, B \) **finite** sets and there is a bijection \(f: A \rightarrow B \), then \(|A| = |B| \)

If \(A, B \) finite and \(|A| = |B| \), then there is a bijection from \(A \) to \(B \)

If \(|A| = |B| = n \), there are \(n! \) such bijections (coming up)
Bijections: Infinite sets
Bijections: Infinite sets

- e.g., \(f: \mathbb{Z} \rightarrow \mathbb{Z} \) defined as \(f(x) = -x \)
Bijections: Infinite sets

- e.g., $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = -x$

- f is a bijection
Bijections: Infinite sets

- e.g., \(f: \mathbb{Z} \rightarrow \mathbb{Z} \) defined as \(f(x) = -x \)
- \(f \) is a bijection
- A set \(S \) is **countably infinite** if there is a bijection from \(S \) to \(\mathbb{Z} \)
Bijections: Infinite sets

- e.g., $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = -x$
 - f is a bijection

- A set S is **countably infinite** if there is a bijection from S to \mathbb{Z}

- e.g., set of even integers \mathbb{E}. $f: \mathbb{E} \to \mathbb{Z}$ where $f(x) = x/2$, is a bijection
Bijections: Infinite sets

- e.g., $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x) = -x$
 - f is a bijection

- A set S is **countably infinite** if there is a bijection from S to \mathbb{Z}

- e.g., set of even integers \mathbb{E}. $f: \mathbb{E} \rightarrow \mathbb{Z}$ where $f(x) = x/2$, is a bijection

 "Two countably infinite sets are only as numerous as one"
Bijections: Infinite sets

- e.g., $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = -x$
 - f is a bijection

- A set S is **countably infinite** if there is a bijection from S to \mathbb{Z}

- e.g., set of even integers \mathbb{E}. $f: \mathbb{E} \to \mathbb{Z}$ where $f(x) = x/2$, is a bijection
 - “Two countably infinite sets are only as numerous as one”

- e.g., there is a bijection $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
Bijections: Infinite sets

- e.g., $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = -x$
 - f is a bijection

- A set S is **countably infinite** if there is a bijection from S to \mathbb{Z}
 - e.g., set of even integers E. $f: E \to \mathbb{Z}$ where $f(x) = x/2$, is a bijection

 - “Two countably infinite sets are only as numerous as one”

- e.g., there is a bijection $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$

 - “Countably infinitely many countably infinite sets are only as numerous as one”
Composition
Composition

Composition “respects onto-ness”
Composition

Composition “respects onto-ness”

If \(f \) and \(g \) are onto, \(g \circ f \) is onto as well
Composition

Composition “respects onto-ness”

If f and g are onto, $g \circ f$ is onto as well

Composition “respects one-to-one-ness”
Composition

Composition “respects onto-ness”

If f and g are onto, \(g \circ f \) is onto as well

Composition “respects one-to-one-ness”

If f and g are one-to-one, \(g \circ f \) is one-to-one as well
Composition

Composition “respects onto-ness”

- If f and g are onto, $g \circ f$ is onto as well

Composition “respects one-to-one-ness”

- If f and g are one-to-one, $g \circ f$ is one-to-one as well

Hence composition respects bijections
Composition

Composition “respects onto-ness”
- If \(f \) and \(g \) are onto, \(g \circ f \) is onto as well

Composition “respects one-to-one-ness”
- If \(f \) and \(g \) are one-to-one, \(g \circ f \) is one-to-one as well

Hence composition respects bijections
- If \(f \) and \(g \) are bijections, \(g \circ f \) is a bijection as well
Permutation of a string
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string

e.g., $\pi_{53214}(\text{hello}) = \text{lleoh}$
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string

\(\pi_{53214}(\text{hello}) = \text{lleoh} \)
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string

- e.g., $\pi_{53214}(\text{hello}) = \text{lleoh}$
- e.g., $\pi_{35142}(\text{lleoh}) = \text{ehlol}$
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string

e.g., $\pi_{53214}(\text{hello}) = \text{lleoh}$
e.g., $\pi_{35142}(\text{lleoh}) = \text{ehlol}$
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string

- e.g., $\pi_{53214}(\text{hello}) = \text{lleoh}$
- e.g., $\pi_{35142}(\text{lleoh}) = \text{ehlol}$

As bijections from $\{1,2,3,4,5\}$ to itself, permutations compose
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string

- e.g., $\pi_{53214}(\text{hello}) = \text{lleoh}$
- e.g., $\pi_{35142}(\text{lleoh}) = \text{ehlol}$

As bijections from $\{1,2,3,4,5\}$ to itself, permutations compose

- e.g., $\pi_{35142} \circ \pi_{53214} = \pi_{21534}$
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string

- e.g., $\pi_{53214}(\text{hello}) = \text{lleoh}$
- e.g., $\pi_{35142}(\text{lleoh}) = \text{ehlol}$

As bijections from $\{1,2,3,4,5\}$ to itself, permutations compose

- e.g., $\pi_{35142} \circ \pi_{53214} = \pi_{21534}$
Permutation of a string

More precisely, permutation of the positions (indices) of characters in a string
e.g., $\pi_{53214}(\text{hello}) = \text{lleoh}$
e.g., $\pi_{35142}(\text{lleoh}) = \text{ehlol}$

As bijections from \{1,2,3,4,5\} to itself, permutations compose
e.g., $\pi_{35142} \circ \pi_{53214} = \pi_{21534}$
Today
Today

One-to-one functions
Today

One-to-one functions

Strictly increasing/decreasing functions are one-to-one (but not vice versa)
Today

- One-to-one functions
 - Strictly increasing/decreasing functions are one-to-one (but not vice versa)
 - One-to-one functions are invertible
Today

- One-to-one functions
 - Strictly increasing/decreasing functions are one-to-one (but not vice versa)
 - One-to-one functions are invertible
- Bijections
Today

- One-to-one functions
 - Strictly increasing/decreasing functions are one-to-one (but not vice versa)
 - One-to-one functions are invertible
- Bijections
 - Uniquely invertible
Today

- One-to-one functions
 - Strictly increasing/decreasing functions are one-to-one (but not vice versa)
 - One-to-one functions are invertible
- Bijective functions
 - Uniquely invertible
 - If A, B finite and have a bijection, then $|A| = |B|$
Today

- One-to-one functions
 - Strictly increasing/decreasing functions are one-to-one (but not vice versa)
 - One-to-one functions are invertible
- Bijections
 - Uniquely invertible
 - If A, B finite and have a bijection, then |A|=|B|
 - Evens, rationals etc. are countably infinite (have bijections with \mathbb{Z})
Today

- One-to-one functions
 - Strictly increasing/decreasing functions are one-to-one
 (but not vice versa)
 - One-to-one functions are invertible
- Bijections
 - Uniquely invertible
 - If A, B finite and have a bijection, then |A|=|B|
 - Evens, rationals etc. are countably infinite (have bijections with Z)
- Composition: “respects” onto-ness and one-to-one-ness
Today

- One-to-one functions
 - Strictly increasing/decreasing functions are one-to-one (but not vice versa)
 - One-to-one functions are invertible
- Bijections
 - Uniquely invertible
 - If A, B finite and have a bijection, then $|A| = |B|$.
 - Evens, rationals etc. are countably infinite (have bijections with \mathbb{Z})
- Composition: “respects” onto-ness and one-to-one-ness
- Composing permutations