1. Graphs [10 points]

In this problem we use an adjacency matrix representation for a graph: an $n \times n$ symmetric matrix M with entries 0 and 1 is used to represent a graph $G = (V, E)$ with vertex set $V = \{1, \ldots, n\}$ and edge-set E, such that $M_{ij} = 1$ if and only if there is an edge $\{i, j\} \in E$.

For example, the cycle graph C_4 with $V = \{1, 2, 3, 4\}$ and $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\}$ has the adjacency matrix

$$
\begin{bmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
\end{bmatrix}
$$

Consider the graphs G_1, G_2, G_3, G_4 defined below.

$$
\begin{array}{cccc}
\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{bmatrix} & \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
\end{bmatrix} & \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
\end{bmatrix} & \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\end{array}
$$

G_1 G_2 G_3 G_4

(a) The number of edges in G_3 is 5.

(b) Select all the statements below that are true. (No justification is needed.)

- [✓] A. G_1 is isomorphic to K_4
- [✓] B. G_2 is isomorphic to C_4
- [] C. G_3 is isomorphic to a subgraph of G_2
- [✓] D. G_4 is isomorphic to a subgraph of C_4

(c) Which of G_1, G_2, G_3, G_4 are bi-partite? G_2 and G_4.

(d) Which of G_1, G_2, G_3, G_4 have an Eulerian circuit? G_2.
Let $T : \mathbb{Z}^+ \rightarrow \mathbb{N}$ be as follows (defined for powers of 2):

\[
T(1) = c
\]
\[
T(n) = 2T(n/2) + f(n) \quad \forall n \in \{2^k | k \in \mathbb{Z}^+ \}
\]

for some function $f : \mathbb{Z}^+ \rightarrow \mathbb{N}$, and some constant $c \in \mathbb{N}$.

(a) Draw a recursion tree for $T(8)$, as defined in class. Fill in all the nodes of the tree, so that $T(8)$ is equal to the sum of the values in the nodes of this tree. Also indicate (in the space below) what this value of $T(8)$ is (in terms of f and c only, without referring to the value of the function T itself).

\[
T(8) = f(8) + 2f(4) + 4f(2) + 8c
\]

(b) Suppose $f(n) = n$ and $c = 0$. Give a closed form expression for $T(n)$ (when n is a power of 2).

\[
T(n) = n \log_2 n
\]
3. Induction. [6 points]

Below is a proof by (weak) induction, to prove that \(\forall m, n \in \mathbb{Z}^+ \) \(\frac{(m+n)!}{m!n!} \in \mathbb{Z}^+ \). The induction variable is \(m + n \).

Fill in the six blanks below to complete the proof. You must choose your answers to match the rest of the proof as given here (and not attempt to alter or generalize the rest of the proof). In particular, note that the statement and proof consider only positive integers \(m, n \) (though it is possible, using a slightly different proof, to extend this to the set of all natural numbers).

(a) The base case claim is that \(\forall m, n \in \mathbb{Z}^+, \text{s.t., } m + n = 2 \) we have \(\frac{(m+n)!}{m!n!} \in \mathbb{Z}^+ \). This claim holds because the only possible values of \(m, n \in \mathbb{Z}^+ \) in this case are \(m = 1 \) and \(n = 1 \).

Then, \(\frac{(m+n)!}{m!n!} = \frac{2}{2} \) which is indeed in \(\mathbb{Z}^+ \).

(b) The induction step. We claim that:

\[
\forall k \geq 2, \text{ if } \forall m, n \in \mathbb{Z}^+ \text{ such that } m + n = k, \text{ it holds that } \frac{(m+n)!}{m!n!} \in \mathbb{Z}^+,
\]

then \(\forall m, n \in \mathbb{Z}^+, \text{s.t., } m + n = k + 1 \) we have \(\frac{(m+n)!}{m!n!} \in \mathbb{Z}^+ \).

(c) To prove the above claim, suppose \(m, n \in \mathbb{Z}^+ \) are arbitrary numbers such that \(m + n = k + 1 \) where \(k \) is as in the claim.

Firstly, we note that for all \(m, n \in \mathbb{Z}^+ \),

\[
\frac{(m+n)!}{m!n!} = \frac{(m + (n-1))!}{m!(n-1)!} + \frac{((m-1) + n)!}{(m-1)!n!}.
\]

Now we argue that the first term \(\frac{(m+(n-1))!}{m!(n-1)!} \in \mathbb{Z}^+ \). For this we consider two cases.

Case \(n = 1 \): In this case \(\frac{(m+(n-1))!}{m!(n-1)!} = \frac{(m+0)!}{m!0!} = 1 \in \mathbb{Z}^+ \).

Case \(n > 1 \): In this case we can apply the (weak) induction hypothesis because \(m, (n-1) \in \mathbb{Z}^+ \) and \(m + (n-1) = k \). Then by the induction hypothesis, we get \(\frac{(m+(n-1))!}{m!(n-1)!} \in \mathbb{Z}^+ \).

Thus in either case \(\frac{(m+(n-1))!}{m!(n-1)!} \in \mathbb{Z}^+ \), as desired.

Similarly, \(\frac{((m-1)+n)!}{(m-1)!n!} \in \mathbb{Z}^+ \). Since \(\frac{(m+n)!}{m!n!} \) is the sum of two numbers in \(\mathbb{Z}^+ \), \(\frac{(m+n)!}{m!n!} \in \mathbb{Z}^+ \).
4. Multiple Choice Problems. [20 points]

I. Degrees of Graphs. Choose all the correct statements.

✓ A. If every node in a graph G has degree exactly 1, then G has half as many connected components as it has nodes.

□ B. If every node in a graph G has degree exactly 2, then G is isomorphic to a cycle graph.

✓ C. If all nodes in G have odd degree, then G must have an even number of nodes.

✓ D. If a graph with n nodes has a node with degree $n - 2$, then either the graph is connected or it has a node of degree 0.

II. Chromatic Number. Below, G and H stand for graphs. Choose the correct statements.

□ A. If G is a proper subgraph of H then $\chi(G) < \chi(H)$.

✓ B. If G is a proper subgraph of K_n then $\chi(G) < n$.

✓ C. If G is isomorphic to H, then $\chi(G) = \chi(H)$.

□ D. If G has maximum degree n, then $\chi(G) = n + 1$.

III. Grammar. Consider the grammar below, with start symbol S.

$$
S \rightarrow AS \mid SB \mid \epsilon \\
A \rightarrow Aa \mid a \\
B \rightarrow Bb \mid b
$$

Which of the following strings can be generated by this grammar?

✓ A. a

✓ B. abb

□ C. $abba$

✓ D. $aaabb$

IV. Subgraph. Consider obtaining a subgraph of K_4 by deleting some of its edges (but retaining all the vertices). Which of the following operations is/are guaranteed to create a connected acyclic subgraph (i.e., a graph-theoretic tree)?

□ A. Delete any 4 edges from K_4 in such a way that the resulting graph is connected.

□ B. Delete any 2 or 3 edges from K_4 in such a way that the resulting graph is connected.

✓ C. Delete any 3 edges from K_4 in such a way that there are no cycles in the resulting graph.

✓ D. Delete any 3 edges from K_4 in such a way that all 3 deleted edges did not share a common vertex.
5. Problems with Short Answers. [9 points]

This page has 3 problems, each worth 3 points. Each problem has subproblems with blanks that you should fill in with the most appropriate answer. No justification is needed.

(a) Trees

i. In a tree with \(n \) nodes, the sum of the degrees of all the nodes is \(2n - 2 \).

ii. Recall that the \textit{arity} of a tree is equal to the maximum number of children any node has in the tree. The maximum possible height of a tree with arity 5 and 31 nodes is \(26 \), and the minimum possible height of such a tree is \(2 \).

(b) \textbf{Big O}. For each of the following pair of functions \(f: \mathbb{N} \rightarrow \mathbb{R}^+ \) and \(g: \mathbb{N} \rightarrow \mathbb{R}^+ \), give \(c, k \geq 0 \) to show that \(f(n) = O(g(n)) \). That is, give \(c, k \geq 0 \) such that \(\forall n \geq k, f(n) \leq c \cdot g(n) \). In each case, find the smallest possible integer \(c \), and for that value of \(c \), the smallest possible integer \(k \). No justification is needed.

i. \(f(n) = 10n^2, \ g(n) = \frac{n^2}{2} + 100 \). \(c = 20, \ k = 0 \).

ii. \(f(n) = \frac{n^2}{2} + 100, \ g(n) = 10n^2 \). \(c = 1, \ k = 4 \).

iii. \(f(n) = n^2 + 4, \ g(n) = 2^n \). \(c = 1, \ k = 5 \).

(c) \textbf{Nested Loops}. Consider the pseudocode below in which the variable \texttt{count} keeps track of the number of addition/subtraction operations on the variables \(i \) and \(j \). At the end it prints this count.

\begin{verbatim}
Loopy(n: int) {
 i := 0
 j := n
 count := 0
 while (i < j) {
 while (j > (i+j)/2 + 4) {
 count := count + 1
 j := j - 1
 }
 count := count + 1
 i := i + 1
 }
 print count
}
\end{verbatim}

What is the output printed by the function on input \(n \in \mathbb{N} \) (as a function of \(n \))? \(n \).

[Hint: When the outer-loop exits, it will be the case that \(i = j \).]
6. Running Time of an Algorithm. [10 points]

Consider the two functions below, each of which computes \(x^{(2^d)} \), for some real number \(x \) and non-negative integer \(d \).

```plaintext
RSq1(x: real, d: int) {
    if (d=0)
        return x
    else
        return(RSq1(x,d-1) * RSq1(x,d-1))
}
```

```plaintext
RSq2(x: real, d: int) {
    if (d=0)
        return x
    else {
        y := RSq2(x,d-1)
        return y*y
    }
}
```

Let \(T_1(d) \) be the time taken by \(RSq1 \), on input \((x,d)\), and let \(T_2(d) \) the time taken by \(RSq2 \). (Assume that all operations in the code, except the recursive computation, take time, independent of \(d \).)

(a) Give a recurrence relation (including base case) for \(T_1(d) \).

Solution: \(T_1(0) = c \) for a constant \(c \) (or \(T_1(0) = 1 \)).

For integers \(d \geq 1 \), \(T_1(d) = 2T_1(d-1) + c \) (or \(T_1(d) = 2T_1(d-1) + 1 \)).

(b) Find a closed form expression for \(T_1(d) \). It is enough to write it as \(\Theta(\cdot) \) expression (using polynomial, logarithmic or exponential functions). No explanation is needed (but may help with partial credit).

Solution: \(T_1(d) = \Theta(2^d) \).

(c) Give a recurrence relation (including base case) for \(T_2(d) \).

Solution: \(T_2(0) = c \) and for integers \(d \geq 1 \), \(T_2(d) = T_2(d-1) + c \).

(d) Find a closed form expression for \(T_2(d) \). It is enough to write it as \(\Theta(\cdot) \) expression (using polynomial, logarithmic or exponential functions). No explanation is needed (but may help with partial credit).

Solution: \(T_2(d) = \Theta(d) \).
7. Grammar

Consider the following grammar. The set of terminals is \{a, b, +, ×, (,)\}, and the set of variables is \{Exp, Term, Factor\}. Exp is the start-symbol.

\[
\begin{align*}
\text{Exp} & \rightarrow \text{Exp} + \text{Term} \mid \text{Term} \\
\text{Term} & \rightarrow \text{Term} \times \text{Factor} \mid \text{Factor} \\
\text{Factor} & \rightarrow (\text{Exp}) \mid a \mid b
\end{align*}
\]

Give the parse tree generating the following string:

\[a \times b + b \times (a + b)\]

Solution:

```
E
 / | \ 
E + T
 / | \ 
T  T x F
 / | \ 
T x F  F ( E )
 / | \ 
F b b E + T
 / | \ 
F  b  E  F
 / | \ 
a  T  F
 / | \ 
F  b
 / | \ 
a
```
8. Proof by Induction. [12 points]

Prove the following two statements using mathematical induction. Clearly state what your induction variable is, state and prove the base case, and state and prove the induction step. In the induction step, clearly indicate what range of values it applies to, what the induction hypothesis is and what the statement implied by it is.

(a) Prove by induction: For all \(h \in \mathbb{N} \), the number of nodes in a full and complete \(m \)-ary tree of height \(h \) is (for any integer \(m > 1 \))

\[
\frac{m^{h+1} - 1}{m - 1}.
\]

Solution:

The base case is height zero. Then, the tree contains only a root, and the number of nodes is one. Also, \(\frac{m^{h+1} - 1}{m - 1} = \frac{m^1 - 1}{m - 1} = 1 \), so the base case holds.

Suppose a tree of height \(k \in \mathbb{N} \) contains \(\frac{m^{k+1} - 1}{m - 1} \) nodes. Then, there are two ways to go about this:

i. This is the recommended approach that works in general: we can view a full and complete \(m \)-ary tree of height \(k + 1 \) as a root, with \(m \) full and complete \(m \)-ary subtrees of height \(k \). Then, by the inductive hypothesis, each subtree has \(\frac{m^{k+1} - 1}{m - 1} \) nodes. Therefore, the entire tree has \(1 + m \cdot \frac{m^{k+1} - 1}{m - 1} = 1 + \frac{m^{k+2} - m}{m - 1} = \frac{m^{k+2} - m + (m-1)}{m - 1} = \frac{m^{k+2} - 1}{m - 1} \) nodes. Then, the statement holds for \(h = k + 1 \).

ii. We can think of a full and complete \(m \)-ary tree of height \(k + 1 \) as consisting of a full and complete \(m \)-ary tree of height \(k \), plus an additional complete layer. (Note that this approach, of growing the tree at the leaves, doesn’t always work out; but with the special structure of full and complete tree, it works.) With our inductive hypothesis, this contains \(\frac{m^{k+1} - 1}{m - 1} + m^{k+1} = \frac{m^{k+1} - 1}{m - 1} + \frac{m^{k+2} - m^{k+1}}{m - 1} = \frac{m^{k+2} - 1}{m - 1} \) nodes.
(b) Prove by induction: For all \(n \in \mathbb{N} \),

\[
\sum_{k=0}^{n} k \cdot 2^k = (n - 1) \cdot 2^{n+1} + 2.
\]

Solution:
The base case is \(n = 0 \), so \(\sum_{k=0}^{0} k \cdot 2^k = 0 \cdot 2^0 = 0 \). On the other hand, \((0-1) \cdot 2^{0+1} + 2 = -2 + 2 = 0\). So the base case holds.

Suppose \(\sum_{k=0}^{x} k \cdot 2^k = (x - 1) \cdot 2^{x+1} + 2 \) for some \(x \in \mathbb{N} \).

Then \(\sum_{k=0}^{x+1} k \cdot 2^k = \sum_{k=0}^{x} k \cdot 2^k + (x + 1) \cdot 2^{x+1} \). From our inductive hypothesis, this is \((x - 1) \cdot 2^{x+1} + 2 + (x + 1) \cdot 2^{x+1} = 2x \cdot 2^{x+1} + 2 = x \cdot 2^{x+2} + 2 \). Then, the statement is true for \(n = x + 1 \).
9. **Write a Grammar.** [15 points]

Give a context free grammar that generates all strings composed of 0s and 1s that have equal number of 0s and 1s.

Hint: Given a non-empty string with equal number of 0s and 1s, if you scan it from left to right, there are 3 possibilities:

- At all points till you each the last position, the number of 0s encountered is strictly more than the number of 1s. (Then the first position must have a 0 and the last position must have a 1.)
- At all points till you each the last position, the number of 1s encountered is strictly more than the number of 0s. (Then the first position must have a 1 and the last position must have a 0.)
- There is some position before the last position when the number of 0s and number of 1s encountered so far are equal.

In each case, can you break down the string into smaller piece(s) with equal number of 0s and 1s?

Solution:

\[S \rightarrow 0S1 | 1S0 | SS | \epsilon \]
10. Extra Credit. [12 points]

This problem relates to adjacency matrices of graphs. The graphs in this problem may have self-loops, but are otherwise simple (i.e., undirected, and no multi-edges).

Consider a boolean matrix multiplication defined as follows: If A is an $\ell \times m$ matrix and B is an $m \times n$ matrix with 0-1 values (identified with boolean values F and T), then $A \cdot B$ is an $\ell \times n$ matrix M defined by

$$ M_{ij} = (A_{i1} \land B_{1j}) \lor (A_{i2} \land B_{2j}) \lor \cdots \lor (A_{im} \land B_{mj}) $$

or more succinctly $M_{ij} = \bigvee_{k=1}^{m} (A_{ik} \land B_{kj})$. That is, boolean matrix multiplication is similar to the standard multiplication, but with logical OR instead of addition and logical AND instead of multiplication. We denote $A \cdot A$ by A^2.

(a) Consider A_n to be the adjacency matrix of the cycle graph C_n. (A_4 is shown in Problem 1.) Compute the matrix A_4^2.

$$ A_4^2 = \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{pmatrix} $$

(b) Draw/describe the graph corresponding to A_4^2. How is an edge in this graph related to (paths in) C_4?

Solution:

$G_{A_4^2} = (V, E)$ where $V = \{1, 2, 3, 4\}$ and $E = \{\{1\}, \{2\}, \{3\}, \{4\}, \{1, 3\}, \{2, 4\}\}$, where the singleton sets in E represent self-loops.

The edges in this graph correspond to paths of length 2 in C_4. Formally, $\{u, v\}$ is an edge in this graph if and only if there exists a node w such that $\{u, w\}$ and $\{w, v\}$ are both edges in C_4.

(c) In general how is the graph corresponding to A^2 related to the graph corresponding to A? Use this to draw/describe the graph corresponding to A_6^2.

Solution:

The edges in the graph corresponding to A^2 are paths of length 2 in the graph corresponding to A. (This includes a self-loop on every node with an edge incident on it.)

The graph corresponding to A_6^2 consists of two triangles, with self-loops on all vertices. i.e., $V = \{1, 2, 3, 4, 5, 6\}$ and

$$ E = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{1, 3\}, \{3, 5\}, \{5, 1\}, \{2, 4\}, \{4, 6\}, \{6, 2\}\}. $$
Extra Credit. [8 points]

Consider the function $g : \mathbb{N} \to \mathbb{N}$ defined as $g(0) = 0$ and, for all $n \in \mathbb{Z}^+$, $g(n) = 2g(n-1) + n$. Find a closed form for g, \textit{without a summation expression}. (Use the expressions from Problem 8 to remove any summation notation from your closed form.) For partial credit, give a $O(\cdot)$ bound on $g(n)$ that is as tight as you can make it.

\textbf{Solution:}

\[g(n) = \left(\sum_{k=0}^{n-1} (n-k)2^k \right) + 2^n g(0) \quad \text{as sum of levels of the recursion tree} \]

\[= n \left(\sum_{k=0}^{n-1} 2^k \right) - \left(\sum_{k=0}^{n-1} k2^k \right) \quad \text{since } g(0) = 0 \]

\[= n (2^n - 1) - ((n - 2)2^n + 2) \quad \text{using Problem 8} \]

\[= 2^{n+1} - (n + 2) \]