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This lecture continues the discussion of planar graphs (section 9.7 of
Rosen). It’s a half-lecture due to the makeup quiz.

1 Announcements etc

The final exam will be 8-11 am on Thursday December 17th. Main room
will be 1404. We also have two overflow rooms, nearby in Siebel. Check your
exam schedules for conflicts RIGHT NOW because you need to inform
instructors by the last day of classes.

Quiz 3’s will be returned in discussion sections today/tomorrow.

2 K3,3 isn’t planar

Last lecture, I claimed that K3, 3 isn’t planar. Let’s prove this more carefully.
First, let’s label the vertices:
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A B C

1 2 3

The four vertices A, B, 1, and 2 form a cycle.

A

B1

2

So C must live inside the cycle or outside the cycle. Let’s suppose it lives
inside. (The argument is similar if it lives outside.) Our partial graph then
looks like:

A

B

C

1

2

The final vertex 3 must go into one of the three regions in this diagram.
And it’s supposed to connect to A, B, and C. But none of the three regions
has all three of these vertices on its boundary. So we can’t add C and its
connections without a crossing.

This proof is ok, but it requires some care to make it convincing. More-
over, it’s not going to generalize easily to more complex examples. So let’s
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look for algebraic approaches to establishing that certain graphs aren’t pla-
nar.

3 Recap

Recall that a simple graph contains no self-loops or multi-edges. For a simple
planar graph, remember that we know the following (where e is the number
of edges, v is the number of vertices, and f is the number of faces/regions).

• Euler’s formula says that v − e + f = 2.

• Handshaking theorm: sum of vertex degrees is 2e

• Second handshaking theorm (planar graphs only): sum of the face de-
grees is also 2e.

We can combine these facts to produce some equations that constrain the
shape of planar graphs. These equations can be used to quickly prove that
certain graphs cannot be planar.

4 A corollary of Euler’s formula

Suppose G is a connected simple planar graph, with v vertices, e edges, and
f faces, where f ≥ 3. Then e ≤ 3v − 6.

Proof: The sum of the degrees of the regions is equal to twice the
number of edges. But each region must have degree ≥ 3. So we
have 2e ≥ 3f . Then 2

3
e ≥ f .

Euler’s formula says that v−e+f = 2, so f = e−v+2. Combining
this with 2

3
e ≥ f , we get

e − v + 2 ≤
2

3
e

So e

3
− v + 2 ≥ 0. So e

3
≤ v − 2. Therefore e ≤ 3v − 6.
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From this fact, we can deduce that if G is a connected simple planar
graph, then G has a vertex of degree no more than five.

Proof: This is clearly true if G has one or two vertices.

If G has three vertices, we know that e ≤ 3v−6. So 2e ≤ 6v−12.

By the handshaking theorem, 2e is the sum of the degrees of the
vertices. Suppose that the degree of each vertex was at least 6.
Then we would have 2e ≥ 6v. But this contradicts the fact that
2e ≤ 6v − 12.

We can also use this formula to show that the graph K5 isn’t planar.
K5 has five vertices and 10 edges. This isn’t consistent with the formula
e ≤ 3v − 6. Unfortunately, this trick doesn’t work for K3,3, which isn’t
planar but satisfies the equation (with 6 vertices and 9 edges).

5 Another corollary

In a similar way, we can show that if G is a connected planar simple graph
with e edges and v vertices, with v ≥ 3, and if G has no circuits of length 3,
then e ≤ 2v − 4.

Proof: The sum of the degrees of the regions is equal to twice the
number of edges. But each region must have degree ≥ 4 because
we have no circuits of length 3. So we have 2e ≥ 4f . Then
1

2
e ≥ f .

Euler’s formula says that v − e + f = 2. or e − v + 2 = f .
Combining this with 1

2
e ≥ f , we get

e − v + 2 ≤
1

2
e

So e

2
− v + 2 ≤ 0. So e

2
≤ v − 2. Therefore e ≤ 2v − 4.

We can use this formula to show that K3,3 isn’t planar.
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6 Kuratowski’s Theorem

The two example non-planar graphs K3, 3 and K5 weren’t picked randomly.
It turns out that any non-planar graph must contain a copy of one of these
two graphs. Or, sort-of. The copy of K3, 3 and K5 doesn’t actually have
exactly the literal vertex and edge structure of one of those graphs (i.e. be
isomorphic). We need to define a looser notion of graph equivalence, called
homeomorphism.

A graph G is a subdivision of another graph F if G is just like F except
that you’ve divided up some of F ’s edges by adding vertices in the middle
of them. For example, in the following picture, the righthand graph is a
subdivision of the lefthand graph.

A B

C D

A B

C D

E

F G

Two graphs are homeomorphic if one is a subdivision of another, or they
are both subdivisions of some third graph. Graph homeomorphism is a spe-
cial case of a very general concept from topology: two objects are homeomor-
phic if you can set up a bijection between their points which is continuous
in both directions. For surfaces (e.g. a rubber ball), it means that you can
stretch or deform parts of the surface, but not cut holes in it or paste bits of
it together.

We can now state our theorem precisely.

Claim 1 Kuratowski’s Theorem: A graph is nonplanar if and only if it con-

tains a subgraph homeomorphic to K3,3 or K5.

This was proved in 1930 by Kazimierz Kuratowski, and the proof is ap-
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parently somewhat difficult. So we’ll just see how to apply it.

For example, here’s a graph known as the Petersen graph (after a Danish
mathematician named Julius Petersen).

A

B E

C D

a

b e

c d

This isn’t planar. The offending subgraph is the whole graph, except for
the node B (and the edges that connect to B):
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A

E

C D

a

b e

c d

This subgraph is homeomorphic to K3,3. To see why, first notice that
the node b is just subdividing the edge from d to e, so we can delete it. Or,
formally, the previous graph is a subdivision of this graph:

A

E

C D

a

e

c d

In the same way, we can remove the nodes A and C, to eliminate unnec-
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essary subdivisions:

E

D

a

e

c d

Now deform the picture a bit and we see that we have K3,3.

E

Da e

c d
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