Introduction to Parallel Computing

Frank Willmore
February 6, 2012
Outline

• Overview
• Theoretical background
• Parallel computing systems
• Parallel programming models
• MPI/OpenMP examples
OVERVIEW
What is Parallel Computing?

- Parallel computing: use of multiple processors or computers working together on a common task.
 - Each processor works on its section of the problem
 - Processors can exchange information

Grid of Problem to be solved:

- CPU #1 works on this area of the problem
- CPU #2 works on this area of the problem
- CPU #3 works on this area of the problem
- CPU #4 works on this area of the problem

[Diagram showing a grid with processors working on different sections and exchanging information]

[Image of the University of Texas at Austin and Texas Advanced Computing Center logos]
Why Do Parallel Computing?

• Limits of single CPU computing
 – performance
 – available memory
• Parallel computing allows one to:
 – solve problems that don’t fit on a single CPU
 – solve problems that can’t be solved in a reasonable time
• We can solve...
 – larger problems
 – the same problem faster
 – more cases
• All computers are parallel these days, even your iphone 4S has two cores...
THEORETICAL BACKGROUND
Speedup & Parallel Efficiency

• Speedup:

\[S_p = \frac{T_s}{T_p} \]

- \(p \) = # of processors
- \(T_s \) = execution time of the sequential algorithm
- \(T_p \) = execution time of the parallel algorithm with \(p \) processors
- \(S_p = P \) (linear speedup: ideal)

• Parallel efficiency

\[E_p = \frac{S_p}{p} = \frac{T_s}{pT_p} \]
Limits of Parallel Computing

• Theoretical Upper Limits
 – Amdahl’s Law
 – Gustafson’s Law

• Practical Limits
 – Load balancing
 – Non-computational sections

• Other Considerations
 – time to re-write code
Amdahl’s Law

• All parallel programs contain:
 – parallel sections (we hope!)
 – serial sections (we despair!)

• Serial sections limit the parallel effectiveness

• Amdahl’s Law states this formally
 – Effect of multiple processors on speed up

\[S_P = \frac{T_S}{T_P} \left(1 + \frac{f_p}{f_s + \frac{f_p}{P}}\right) \]

where

• \(f_s \) = serial fraction of code
• \(f_p \) = parallel fraction of code
• \(P \) = number of processors

Example:
\[f_s = 0.5, f_p = 0.5, P = 2 \]
\[S_{p, \text{max}} = \frac{1}{0.5 + 0.25} = 1.333 \]
Amdahl’s Law
Practical Limits: Amdahl’s Law vs. Reality

- In reality, the situation is even worse than predicted by Amdahl’s Law due to:
 - Load balancing (waiting)
 - Scheduling (shared processors or memory)
 - Cost of Communications
 - I/O
Gustafson’s Law

- Effect of multiple processors on run time of a problem with a *fixed amount of parallel work per processor.*

\[S_p \times P \times (P - 1) \]

- \(S_p \) is the fraction of non-parallelized code where the parallel work per processor is fixed (not the same as \(f_p \) from Amdahl’s)
- \(P \) is the number of processors
Comparison of Amdahl and Gustafson

Amdahl: fixed work

\[f_p = 0.5 \]

\[
S = \frac{1}{f_s + f_p / N}
\]

\[
S_2 = \frac{1}{0.5 + 0.5 / 2} = 1.33
\]

\[
S_4 = \frac{1}{0.5 + 0.5 / 4} = 1.6
\]

Gustafson: fixed work per processor

\[= 0.5 \]

\[
S_p \quad P \quad \times(P \quad 1)
\]

\[
S_2 \quad 2 \quad 0.5(2 \quad 1) = 1.5
\]

\[
S_4 \quad 4 + 0.5(4 \quad 1) = 2.5
\]
Scaling: Strong vs. Weak

• We want to know how quickly we can complete analysis on a particular data set by increasing the PE count
 – Amdahl’s Law
 – Known as “strong scaling”

• We want to know if we can analyze more data in approximately the same amount of time by increasing the PE count
 – Gustafson’s Law
 – Known as “weak scaling”
PARALLEL SYSTEMS
“Old school” hardware classification

<table>
<thead>
<tr>
<th></th>
<th>Single Instruction</th>
<th>Multiple Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Data</td>
<td>SISD</td>
<td>MISD</td>
</tr>
<tr>
<td>Multiple Data</td>
<td>SIMD</td>
<td>MIMD</td>
</tr>
</tbody>
</table>

SISD No parallelism in either instruction or data streams (mainframes)

SIMD Exploit data parallelism (stream processors, GPUs)

MISD Multiple instructions operating on the same data stream. Unusual, mostly for fault-tolerance purposes (space shuttle flight computer)

MIMD Multiple instructions operating independently on multiple data streams (most modern general purpose computers, head nodes)

 NOTE: GPU references frequently refer to SIMT, or single instruction multiple thread
Hardware in parallel computing

Memory access

- Shared memory
 - SGI Altix
 - IBM Power series nodes

- Distributed memory
 - Uniprocessor clusters

- Hybrid/Multi-processor clusters (Ranger, Lonestar)

- Flash based (e.g. Gordon)

Processor type

- Single core CPU
 - Intel Xeon (Prestonia, Wallatin)
 - AMD Opteron (Sledgehammer, Venus)
 - IBM POWER (3, 4)

- Multi-core CPU (since 2005)
 - Intel Xeon (Paxville, Woodcrest, Harpertown, Westmere, Sandy Bridge...)
 - AMD Opteron (Barcelona, Shanghai, Istanbul,...)
 - IBM POWER (5, 6...)
 - Fujitsu SPARC64 VIIIfx (8 cores)

- Accelerators
 - GPGPU
 - MIC
Shared and distributed memory

- All processors have access to a pool of shared memory
- Access times vary from CPU to CPU in NUMA systems
- Example: SGI Altix, IBM P5 nodes

- Memory is local to each processor
- Data exchange by message passing over a network
- Example: Clusters with single-socket blades
Hybrid systems

• A limited number, \(N \), of processors have access to a common pool of shared memory

• To use more than \(N \) processors requires data exchange over a network

• Example: Cluster with multi-socket blades
Multi-core systems

• Extension of hybrid model

• Communication details increasingly complex
 – Cache access
 – Main memory access
 – Quick Path / Hyper Transport socket connections
 – Node to node connection via network
Accelerated (GPGPU and MIC) Systems

- Calculations made in both CPU and accelerator
- Provide abundance of low-cost flops
- Typically communicate over PCI-e bus
- Load balancing critical for performance
Accelerated (GPGPU and MIC) Systems

GPGPU (general purpose graphical processing unit)
- Derived from graphics hardware
- Requires a new programming model and specific libraries and compilers (CUDA, OpenCL)
- Newer GPUs support IEEE 754-2008 floating point standard
- Does not support flow control (handled by host thread)

MIC (Many Integrated Core)
- Derived from traditional CPU hardware
- Based on x86 instruction set
- Supports multiple programming models (OpenMP, MPI, OpenCL)
- Flow control can be handled on accelerator
Rendering a frame: Canonical example of a GPU task

• Single instruction: “Given a model and set of scene parameters...”
• Multiple data: Evenly spaced pixel locations \((x_i, y_i)\)
• Output: “What are my red/green/blue/alpha values at \((x_i, y_i)\)?”

• The first uses of GPUs as accelerators were performed by posing physics problems as if they were rendering problems!
Calculation of a free volume index over an evenly spaced set of points in a simulated sample of polydimethylsiloxane (PDMS)

- Relates directly to chemical potential via Widom insertion formalism of statistical mechanics
- Defined for all space
- Readily computable on GPU because of parallel nature of domain decomposition
- Generates voxel data which lends itself to spatial/shape analysis

\[
FVI = e^{-\beta\psi_{\text{ins}}}
\]

\[
B_i = \frac{1}{V} \int FVI_i dV
\]

\[
\mu_i = -k_B T \ln \left(\frac{B_i}{\rho_i \lambda^3} \right)
\]
PROGRAMMING MODELS
Types of parallelism

• Data Parallelism
 – Each processor performs the same task on different data (remember SIMD, MIMD)

• Task Parallelism
 – Each processor performs a different task on the same data (remember MISD, MIMD)

• Many applications incorporate both
Implementation: **Single Program Multiple Data**

- Dominant programming model for shared and distributed memory machines
- One source code is written
- Code can have conditional execution based on which processor is executing the copy
- All copies of code start simultaneously and communicate and synchronize with each other periodically
Data Parallel Programming Example

- One code will run on 2 CPUs
- Program has array of data to be operated on by 2 CPUs so array is split into two parts.

```
program:
... if CPU=a then
  low_limit=1
  upper_limit=50
else if CPU=b then
  low_limit=51
  upper_limit=100
end if
do I = low_limit, upper_limit
  work on A(I)
end do
... end program
```

```
CPU A
program:
... low_limit=1
      upper_limit=50
do I = low_limit, upper_limit
  work on A(I)
end do
... end program
```

```
CPU B
program:
... low_limit=51
      upper_limit=100
do I = low_limit, upper_limit
  work on A(I)
end do
... end program
```
Task Parallel Programming Example

- One code will run on 2 CPUs
- Program has 2 tasks (a and b) to be done by 2 CPUs

```fortran
program.f:
    ...
    initialize
    ...
    if CPU=a then
        do task a
    elseif CPU=b then
        do task b
    end if
    ...
    end program
```

```fortran
CPU A
program.f:
    ...
    initialize
    ...
    do task a
    ...
    end program
```

```fortran
CPU B
program.f:
    ...
    initialize
    ...
    do task b
    ...
    end program
```
Shared Memory Programming: pthreads

• Shared memory systems (SMPs, ccNUMAs) have a single address space
• Applications can be developed in which loop iterations (with no dependencies) are executed by different processors
• Threads are ‘lightweight processes’ (same PID)
• Allows ‘MIMD’ codes to execute in shared address space
Shared Memory Programming: OpenMP

• Built on top of pthreads
• shared memory codes are mostly data parallel, ‘SIMD’ kinds of codes
• OpenMP is a standard for shared memory programming (compiler directives)
• Vendors offer native compiler directives
Accessing Shared Variables

• If multiple processors want to write to a shared variable at the same time, there could be conflicts:
 – Process 1 and 2
 – read X
 – compute X+1
 – write X

• Programmer, language, and/or architecture must provide ways of resolving conflicts (mutexes and semaphores)
OpenMP Example #1: Parallel Loop

```c
!$OMP PARALLEL DO
  do i=1,128
    b(i) = a(i) + c(i)
  end do
!$OMP END PARALLEL DO
```

- The first directive specifies that the loop immediately following should be executed in parallel.

- The second directive specifies the end of the parallel section (optional).

- For codes that spend the majority of their time executing the content of simple loops, the PARALLEL DO directive can result in significant parallel performance.
OpenMP Example #2: Private Variables

```c
!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)
do I=1,N
    TEMP = A(I)/B(I)
    C(I) = TEMP + SQRT(TEMP)
end do
!$OMP END PARALLEL DO
```

- In this loop, each processor needs its own private copy of the variable TEMP.
- If TEMP were shared, the result would be unpredictable since multiple processors would be writing to the same memory location.
Distributed Memory Programming: MPI

- Distributed memory systems have separate address spaces for each processor
- Local memory accessed faster than remote memory
- Data must be manually decomposed
- MPI is the de facto standard for distributed memory programming (library of subprogram calls)
- Vendors typically have native libraries such as SHMEM (T3E) and LAPI (IBM)
Data Decomposition

- For distributed memory systems, the ‘whole’ grid is decomposed to the individual nodes
 - Each node works on its section of the problem
 - Nodes can exchange information
Typical Data Decomposition

- Example: integrate 2-D propagation problem:

Starting partial differential equation:

\[\frac{\partial \Psi}{\partial t} = D \cdot \frac{\partial^2 \Psi}{\partial x^2} + B \cdot \frac{\partial^2 \Psi}{\partial y^2} \]

Finite Difference Approximation:

\[\frac{f_{i,j}^{n+1} - f_{i,j}^n}{\Delta t} = D \cdot \frac{f_{i+1,j}^n - 2f_{i,j}^n + f_{i-1,j}^n}{\Delta x^2} + B \cdot \frac{f_{i,j+1}^n - 2f_{i,j}^n + f_{i,j-1}^n}{\Delta y^2} \]
MPI Example #1

- Every MPI program needs these:

```c
#include "mpi.h"
int main(int argc, char *argv[]) {
    int nPEs, iam;
    /* Initialize MPI */
    ierr = MPI_Init(&argc, &argv);
    /* How many total PEs are there */
    ierr = MPI_Comm_size(MPI_COMM_WORLD, &nPEs);
    /* What node am I (what is my rank?) */
    ierr = MPI_Comm_rank(MPI_COMM_WORLD, &iam);
    ...
    ierr = MPI_Finalize();
}
```
#include "mpi.h"

int main(int argc, char *argv[])
{
 int numprocs, myid;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 /* print out my rank and this run's PE size */
 printf("Hello from %d of %d\n", myid, numprocs);
 MPI_Finalize();
}
MPI: Sends and Receives

• MPI programs must send and receive data between the processors (communication)

• The most basic calls in MPI (besides the three initialization and one finalization calls) are:
 – MPI_Send
 – MPI_Recv

• These calls are blocking: the source processor issuing the send/receive cannot move to the next statement until the target processor issues the matching receive/send.
Message Passing Communication

- Processes in message passing programs communicate by passing messages

- Basic message passing primitives: MPI_CHAR, MPI_SHORT, ...

- Send (parameters list)

- Receive (parameter list)

- Parameters depend on the library used

- Barriers
MPI Example #3: Send/Receive

```c
#include "mpi.h"

int main(int argc, char *argv[])
{
    int numprocs, myid, tag, source, destination, count, buffer;
    MPI_Status status;

    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
    MPI_Comm_rank(MPI_COMM_WORLD, &myid);
    tag = 1234;
    source = 0;
    destination = 1;
    count = 1;

    if (myid == source){
        buffer = 5678;
        MPI_Send(&buffer, count, MPI_INT, destination, tag, MPI_COMM_WORLD);
        printf("processor %d sent %d\n", myid, buffer);
    }
    if (myid == destination){
        MPI_Recv(&buffer, count, MPI_INT, source, tag, MPI_COMM_WORLD, &status);
        printf("processor %d got %d\n", myid, buffer);
    }
    MPI_Finalize();
}
```
Final Thoughts

• These are exciting and turbulent times in HPC.
• Systems with multiple shared memory nodes and multiple cores per node are the norm.
• Accelerators are rapidly gaining acceptance.
• Going forward, the most practical programming paradigms to learn are:
 – Pure MPI
 – MPI plus multithreading (OpenMP or pthreads)
 – Accelerator models (MPI or multithreading for MIC, CUDA or OpenCL for GPU)