
1

Parsing JSON, Using Libraries,  
Java Collections, Generics



2

Grading (subject to change)
¢ Code Reviews (50%)
¢ Final OpenFrameworks (C++) Project (30%) or (40%)
¢ Participation (20%)

§ 10% iClickers (8% attendance, 2% performance)
§ 10% short assignments online and in class



3

JSON (www.json.org)
¢ JavaScript Object Notation

¢ A lightweight data-interchange format
§ Very commonly used by APIs

¢ It is easy for humans to read and write. 
¢ It is easy for machines to parse and generate.



4

Example JSON object
{

name_of_a_string: “a string”,
name_of_a_number: 2080.8827,
objects_can_be_values: { here_is: “another object” }, 
an_array: [ 27, “word”, { objects_can: “be in arrays” } ]

}



5

Using APIs  (e.g., https://newsapi.org)
¢ API = Application Programming Interface
¢ Get an API key

¢ Grab some JSON:
§ https://newsapi.org/v1/articles?source=associated-

press&sortBy=top&apiKey=YOUR_API_KEY_HERE

¢ JSON formatter/pretty printer
§ https://jsonformatter.curiousconcept.com
§ There are a bunch of these, use your favorite

https://newsapi.org
https://newsapi.org/v1/articles?source=associated-press&sortBy=top&apiKey=YOUR_API_KEY_HERE
https://jsonformatter.curiousconcept.com


6

Parsing JSON in Java
¢ Use the GSON library from Google

§ https://github.com/google/gson/blob/master/UserGuide.md
§ Use Maven to add the library to your project

¢ Build classes with fields for the desired elements of the JSON
§ Use the same names and get the types right

¢ Instantiate a Gson object
§ Gson gson = new Gson();

¢ Use the fromJSON method to parse the JSON
§ Thing newThing = gson.fromJson(jsonString, Thing.class);
§ Thing [] thingArray = gson.fromJson(jsonString, Thing[].class);

¢ Extended example using NewsAPI

https://github.com/google/gson/blob/master/UserGuide.md


7

Java Collections
¢ collection: an object that stores data;  a.k.a. "data structure"

§ the objects stored are called elements
§ some collections maintain an ordering; some allow 

duplicates
§ typical operations: add, remove, clear, contains (search), 
size

§ examples found in the Java class libraries:
§ ArrayList, HashMap, TreeSet

§ all collections are in the java.util package
import java.util.*;



8

Java Collection Framework



9

Lists
¢ list: a collection storing an ordered sequence of elements

§ each element is accessible by a 0-based index
§ a list has a size (number of elements that have been added)
§ elements can be added to the front, back, or elsewhere
§ in Java, a list can be represented as an ArrayList object



10

ArrayList Methods (partial list)
add(value) appends value at end of list
add(index, value) inserts given value just before the given index, 

shifting subsequent values to the right
clear() removes all elements of the list
indexOf(value) returns first index where given value is found 

in list (-1 if not found)
get(index) returns the value at given index
remove(index) removes/returns value at given index, shifting 

subsequent values to the left
set(index, value) replaces value at given index with given value
size() returns the number of elements in list
toString() returns a string representation of the list

such as "[3, 42, -7, 15]"



11

Map
¢ Allows lookups from one kind of object to find another 

object

Map<KeyType, ValueType> myMap = 
HashMap<KeyType, ValueType>();

KeyType key = …;
ValueType value = …;
myMap.put(key, value);
ValueType lookup = myMap.get(key);
assert lookup == value;



12

Map Interface
§ put(k,v)         Associate v with k
§ get(k)           The value associated with k

§ size()           The number of pairs 
§ isEmpty()        Whether it is empty 

§ remove(k)        Remove the mapping for k
§ clear()          Remove all mappings 

§ containsKey(k)   Whether contains a mapping for k
§ containsValue(v) Whether contains a mapping to v



13

Generics
ArrayList<Type> name = new ArrayList<Type>();

¢ When constructing an ArrayList, you must specify the
type of elements it will contain between < and >.
§ This is called a type parameter or a generic class.
§ Allows the same ArrayList class to store lists of different 

types.
§ Must be objects (vs. primitive types)



14

Boxed Primitive Types
¢ Can’t do ArrayList<int>
¢ Java provides “boxed primitives”:  E.g., Integer

§ Sub-class of object
¢ Can do:

§ ArrayList<Integer> lengths = new ArrayList<Integer>
§ lengths.add(7);  // automatically promoted to boxed type

Primitive Type Wrapper Type
int Integer

double Double

char Character

boolean Boolean


