
1

CS 126: Software Design Studio

Prof. G Carl Evans

2

What is this class about?
¢ My goals for this class:

1. Improve your programming productivity by >= 3x
2. Build your self-sufficiency as a programmer
3. Introduce you to modern computing environments
4. Provide skills for getting internships / doing hack-a-thons
5. Have you build a large project relating to your interests

3

What is this class NOT about?
¢ This is NOT a ‘Computer Science’ class

§ This is a programming class
§ (i.e., don’t hate CS even if you hate this class)

¢ But, this class will help you in your ‘Computer Science’ classes
§ Alleviate the low-level programming struggles
§ You can focus your attention on the big ideas!

4

What is Programming? (two views)
“The programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds his castles in the air, from air, creating by exertion of
the imagination. Few media of creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand conceptual structures....
Yet the program construct, unlike the poet's words, is real in the sense that it
moves and works, producing visible outputs separate from the construct itself.
[…] The magic of myth and legend has come true in our time. One types the
correct incantation on a keyboard, and a display screen comes to life, showing
things that never were nor could be.” — Fred Brooks

Pragmatically, programming is the tool that computer scientists use to collect,
analyze, and visualize data, automate tasks, make products, mechanically
prove theorems, and build tools. As lawyers write prose and architects build
models, programming is the underlying tool of the computer scientist.

5

Programming is unique
“The gap between the best software engineering practice and the
average practice is very wide—perhaps wider than in any other
engineering discipline” — Fred Brooks

“The original study that found huge variations in individual
programming productivity … studied professional programmers
with an average of 7 years' experience and found that the ratio of
initial coding time between the best and worst programmers was
about 20 to 1; the ratio of debugging times over 25 to 1; of
program size 5 to 1; and of program execution speed about 10 to
1.” — Steve McConnell

6

How much programming experience do you have?

A. Six months or less
B. Six to 12 months
C. One to two years
D. Two to six years
E. More than six years

7

How do you get better at something?
1. Get lessons from experts

2. Practice

3. Get feedback

4. Metacognition

8

Course Textbook (part 1)
A solid, concise book on
software construction.

Less than $30 on Amazon prime
(or $16 for a Kindle version).

Check out reviews on Amazon
about how good this book is.

9

Code Reviews
¢ Groups of <=6 students + 1 moderator
¢ Meets 2 hours/week (arranged time)
¢ Present code that you’ve written in the past week

§ Get feedback on your style & design
§ See other possible designs (pick up ideas)
§ Practice presentation & verbal communication skills

10

Meta-cognition (or Metacognitive Regulation)

“Regulation of cognition" contains three essential skills:
¢ Planning: appropriate selection of strategies and the correct

allocation of resources that affect task performance.
¢ Monitoring: refers to one's awareness of comprehension and

task performance
¢ Evaluating: refers to appraising the final product of a task and

the efficiency at which the task was performed. This can
include re-evaluating strategies that were used.

11

Learning to help yourself

¢ Very few programs are written completely from scratch.
§ Most rely heavily on libraries, APIs, and frameworks

¢ Existing code is person-made and arbitrary
§ No one inherently knows how to interface to it
§ Need to be able to read documentation

§ Google and StackOverflow are your friend

¢ In this class, we’ll encourage you to help yourself
§ Teach a person to fish, and you feed them for a lifetime.

12

What are we going to do this semester?
¢ style, refactoring, code reviews

§ layout, commenting, variable usage and naming, control
structures

¢ test-driven development, testing frameworks, coverage
§ defensive programming, assertions, exception handling

¢ design, design of routines, object-oriented frameworks
§ design patterns, event-driven programming, MVC

¢ tools: IDEs, source control, debugging, logging, Unix
¢ user interface design, prototyping, user testing
¢ client-server network programming, JSON, SQL

13

Course Infrastructure (1)

¢ Java is a relatively verbose language
¢ Having a good tool accelerates routine drudgery.
¢ IntelliJ IDEA is a really good tool (basis for Android Studio)

14

Course Infrastructure (2)
¢ Version control systems (VCS):

§ A practice that tracks and provides control over changes to
a collection of documents/files.

§ Allows access to any prior version.
§ Facilitates collaboration between multiple developers.

¢ Git: an industry-standard distributed VCS
§ You’ll use this for developing/submitting your code.
§ Very sophisticated tool; we’ll use a subset of features

15

VCS concepts
¢ Repository: A collection of files under version control, along

with all of their previous (committed) versions.

¢ Checkout (verb): To make a working copy on your local
machine for editing/testing.

¢ Commit (verb): To take a set of file modifications and add
them to the repository, usually with a descriptive message.

¢ Commit (noun): The set of changes (a “diff”) along with its
descriptive message resulting from a commit (verb).

16

Git concepts
¢ Local repository vs. remote repository:

§ Git lets you have as multiple related repositories on
different machines.

¢ Clone:
§ Make a local repository from a remote repository.

¢ Staged:
§ Files whose changes are to be committed.

¢ Push:
§ Copying local commit to remote repository.

¢ Pull:
§ Bringing changes from remote to local repository.

Implemented by a “fetch” then a “merge”.

17

Version Control, why do we care?
Single Developer:
¢ Most things worth doing are too big to do all at once.
¢ Break large projects into small steps:

§ Design, implement, test, debug, commit each step.
§ Have access to every working version through VCS
§ If things stop working:

§ Can inspect the differences between current and last working
versions.

§ Can always revert back to last working version (e.g., throw away
changes)

Multiple developers:
¢ Coordinate edits to a shared set of files

18

Java

