CS 126 For Week 6 Code Review Fall 2018

1 Assignment

This week we are extending last weeks assignment. You must complete and fix any issues with your
game engine from last week and write at least one competitive ai for the game. You may write more
than one but only one will be run in the competition. For reference I have retained the assignment
from last week in this document.

2 Sushi Go

The rules to the game can be found here.
https://www.gamewright.com/gamewright/pdfs/Rules/SushiGoTM-RULES. pdf
If you don’t like reading here is a video of how to play the game.
https://www.youtube.com/watch?v=PL2SqLo5VVk

You should implement SushiGo with the assumption that there will always be four players. Addi-
tionally implement the Pass Both Ways of the game where the direction of passing hands switches
between rounds.

3 Chopsticks

Chopsticks will behave a little differently in your game engine than the game in real life. Instead of
shouting "Sushi Go!", a player may choose to return two cards instead of one in giveCardsPlayed
when electing to use chopsticks. To do this the player must have at least one chopsticks card on
the table. The game engine should then insert these two cards into the player’s table hand and
remove the chopsticks card. The chopsticks card should be put into the hand before it is passed
downstream to the next player.

4 Player Interface

We have provided a GUIPlayer player that provides a GUI and allows you to play against three Al
players. We do not expect you do make any changes to GUIPlayer. You should implement a single
naive player who always plays randomly using the player interface. The player interface is outlined
below:

1. init: called once the player object has been instantiated. This gives the player object the
names of all the other players in the game.

2. newGame: called at the start of each game. The game engine should not create new player
objects if multiple games are being played with the same players.

3. receiveHand: called at the start of each turn to give each player their hand for the turn.

4. giveCardsPlayed: called to get the card(s) that the player wishes to keep from this hand.
Most times this should return only one card. If the player has chopsticks and elects to use
them, this will contain two cards.



CS 126 For Week 6 Code Review Fall 2018

5. endRound: called at the end of each round. This gives the player the total points that each
player has accumulated so far in the game.

6. endGame called at the end of each game. This gives the player the total points that each player
scored in the game.

7. receiveTurnResults called at end of each turn. This provides information on what actions
each player took.

Additionally, each player should implement a getName function that returns the name of the player.
Your game engine should be able to handle players whose names conflict (Hint: Add a unique value
to the player name before calling init).

You should implement a single player strategy. This strategy should choose a random card from the
hand they are given and return it. Start thinking about more advanced player strategies. We will
be writing them next week.

5 Turn Result

We have provided a class TurnResult for you to use to represent the results of a single turn for
a single player. This means that each turn should generate four TurnResult objects. The game
engine should then pass these four TurnResult objects to each player so that they know what
actions the other players took during that turn. A TurnResult is composed of:

1. playerName: the name of the player that this TurnResult corresponds to.

2. cardsPlayed: the card(s) that this player played during the turn.

3. playerTableHand: the card(s) that the player has on the table in front of them. This is the
previous plays of the player during this round (excluding maybe chopsticks). This includes
the giveCardsPlayed for this turn.

6 Game Engine

Your game engine should be capable of taking in four players and competing them against each
other. The game engine should be able to identify and print the points scored by each player in a
game. Additionally, the game engine should be able to play multiple games and then print how
many games each player won.

You should create a main function that takes your players and plays them against each other
for 100s of games.



CS 126 For Week 6 Code Review Fall 2018

7 Competition

7.1 How to submit code
Push code to your mater branch. We will pull this when we run the competition.
In order for us to run your Player against our baselines strategies or in the tournament, you must
have a package named "competition". This package can be anywhere in the src directory, as long as
it is named "competition". The following are all fine examples.

e package com.company.competition

e package competition

e package com.company.players.competition

7.2 How to make sure your code compiles

Do not put any packages inside your competition package. Java files in packages which do not end
in "competition" will not be executed. For examplemypackage.competition.ExamplePlayer will
be compiled, competition.mypackage.ExamplePlayer will not be compiled.

Do not reference any classes that you personally created which are outside the competition package.

e References to classes we provided like the Player class or CardType class are perfectly fine.

e If you have other classes you wrote that your strategy needs, they need to be in the competition
package.

e This means you either need to move them to the competition package, or make a copy of the
class to put in the competition package.

e Yes, repeating code is bad, but points will not be taken off for having duplicate classes in the
competition package.

7.3 How to ensure your code is valid
Put only one Player in the competition package, otherwise we will not know what Player to run.
e Do not print things in your Player: it clogs up our logging of the games being run and
we will not execute your code if your strategy prints to console

e Don’t cheat: Don’t attempt to use reflection to modify your player’s score, hand or anything
else. Reflection and other similar techniques are forbidden.

e Don’t write malicious code: Things like calling System.exit () in your Player not only
won’t work but will earn you a 0 on this assignment.

7.4 Miscellaneous

Non .java files in the competition package will be copied and put next to your .class files when
we compile your code This means that if you really want to build a machine learning model for a
strategy, you can do exactly that. Note we do not expect anyone to actually do this.



CS 126 For Week 6 Code Review Fall 2018

7.5 Baseline

You are required to have an Al that preforms well against baseline strategies. Specifically you must
consistently > 90% win games against only the random AI. Additionally you must also beat other
Als at a > 70% win rate. We will have several Als in order of increasing difficulty that will compete
with your AL You will get credit based on the number that you can beat reliably.

Your performance in the competition will not affect your grade.

To test with our Als submit to the competition. This will both run in the competition and also run
against our Als.

8 C++4 Preparation

In order to prepare for using C++4 in the following weeks you will need to show you can build a
C++ program. Specifically the HelloWorld program. There is nothing to check in for this simply
show that you can compile the program at your code review.



