C++ Rule of Three
Compiling and running C++ code

- See: https://courses.engr.illinois.edu/cs225/fa2017/resources/own-machine/

- Mac OS X, Linux: very straight-forward
- Windows: best option for this class might be FastX
 - https://it.engineering.illinois.edu/user-guides/remote-access/connecting-ews-linux-fastx
Compiling C++

- Clang: C language compiler
 - clang for C programs
 - clang++ for C++ programs

- Important arguments / options:
 - Names of the C/C++ source files (not header .h files)
 - `-std=c++0x` To specify which version of C++ standard
 - `-o outputfilename` By default it creates a file called `a.out`

- For example:
 - `clang++ -std=c++0x main.cpp number.cpp -o number`
Makefiles (and build scripts in general)

- A way to automate (complex) tasks
 - Supports incremental updates via dependences
 - Used for building computer programs

- Consist of rules (with the following structure)

 thing_to_make: list_of_things_that_it_uses
 commands_to_execute_to_make_the_thing

- For example:

 number: main.cpp number.cpp number.h
 clang++ -std=c++0x main.cpp number.cpp -o number
Makefiles, cont.

- Allow you to define variables

\[
\text{EXENAME} = q2
\]

\[
\text{CXX} = \text{clang++}
\]
\[
\text{CXXFLAGS} = -\text{std} = c++0x -g -O0 -\text{Wall} -\text{Wextra}
\]

\[
\text{all} : $(\text{EXENAME})
\]

\[
$(\text{EXENAME}) : q2.cpp \text{heap_int.cpp}
\]
\[
$(\text{CXX}) $(\text{CXXFLAGS}) q2.cpp \text{heap_int.cpp} -o $(\text{EXENAME})
\]

- First rule is the default rule
Review: Copy Constructors

- What happens when we copy an object?

ExpressionValue myExpr(1.0);
ExpressionValue myOtherExpr = myExpr;

- It invokes a copy constructor
 - By default, it does a bit-wise copy of the object
 - Can override, by declaring:
 ExpressionValue(const ExpressionValue&);
Why override default copy constructor?

- Generally, when we want a **deep copy**.

- **Shallow copy**: bit-wise copy of the object that copies any pointers/references contained, but not the pointed to/referenced objects

- **Deep copy**: occurs when all of the pointed to/referenced objects are also copied
Operator Overloading

Unlike in Java, in C++ you can define how standard operators behave.

<table>
<thead>
<tr>
<th>Operators that can be overloaded in C++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
</tr>
<tr>
<td>Bitwise</td>
</tr>
<tr>
<td>Assignment</td>
</tr>
<tr>
<td>Comparison</td>
</tr>
<tr>
<td>Logical</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

\[Ev1 + Ev2 \]
Assignment Operator

- Type &operator=(const Type &rhs);

- Again, useful for deep copies

Expression Value EV1
EV1 = EV2
Which is being invoked?

A) Assignment operator
B) Copy Constructor
C) Default Constructor
D) None of the above

ExpressionValue ev1, ev2; // #1
ExpressionValue ev3 = ev2; // #2
ev3 = ev1; // #3
Destructors

- A function called when the object is deleted

- Defined as: `~Type()`

- Again: useful when the object contains other objects, so we can delete those other objects (and not leak memory)
C++ Rule of Three

- is a rule of thumb that if a class defines one (or more) of the following it should probably explicitly define all three:
 - destructor.
 - copy constructor.
 - copy assignment operator.