An Example of How a Computer Really Works

A computer is a complex system consisting of many different components. But at the heart
-- or the brain, if you want -- of the computer is a single component that does the actual
computing. This is the Central Processing Unit, or CPU. In a modern desktop computer, the
CPU is a single "chip" on the order of one square inch in size. The job of the CPU is to
execute programs.

A program is simply a list of unambiguous instructions meant to be followed mechanically
by a computer. A computer is built to carry out instructions that are written in a very
simple type of language called machine language. Each type of computer has its own
machine language, and the computer can directly execute a program only if the program is
expressed in that language. (It can execute programs written in other languages if they are
first translated into machine language.)

When the CPU executes a program, that program is stored in the computer's main memory
(also called the RAM or random access memory), along with the data that is being used or
processed by the program. When the CPU needs to access the program instruction or data
in a particular location, it sends the address of that information as a signal to the memory;
the memory responds by sending back the data contained in the specified location. The CPU
can also store information in memory by specifying the information to be stored and the
address of the location where it is to be stored.

On the level of machine language, the operation of the CPU is fairly straightforward
(although exactly how it is implemented is quite complicated). The CPU executes a program
that is stored as a sequence of machine language instructions in main memory. It does this
by repeatedly reading, or fetching, an instruction from memory and then carrying out, or
executing, that instruction. This process -- fetch an instruction, execute it, fetch another
instruction, execute it, and so on forever -- is called the fetch-and-execute cycle. This is
about all that the CPU ever does.

In this way, a computer executes machine language programs mechanically -- that is
without understanding them or thinking about them. This is not an easy concept and that
is the reason we are taking this time to demonstrate the CPU's operation. (Don't worry we
won't ask you to write any programs in machine language in this class.) The other reason
we are introducing this material is as a demonstration of a computer language whose
behavior can be quite easily understood. While Java code will be much easier to write than
machine code, it can be more difficult to understand what a line of Java code does. By
understanding machine code, it gives us a model we can use to explain what features of
Java code really mean.

CPU Internals:

The CPU contains a few internal registers, which are small memory units capable of holding
a single number. The CPU uses one of these registers -- the program counter, or PC -- to
keep track of where it is in the program it is executing. The PC stores the address of the
next instruction that the CPU should execute. At the beginning of each fetch-and-execute
cycle, the CPU checks the PC to see which instruction it should fetch. During the course of
the fetch-and-execute cycle, the number in the PC is updated to indicate the instruction that



is to be executed in the next cycle. (Usually, but not always, this is just the instruction that
sequentially follows the current instruction in the program.)

In addition to the PC, the simple processor we'll consider has 8 "general purpose” registers
(called r0 - r7). Each of these registers is large enough to hold 4 bytes of data, and these
registers are used to hold the values with which the computer is currently working. The
processor also includes 3 condition code registers (called N, Z, and P); each of these
registers holds a single bit.
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Instructions:

Instructions have two parts: 1) the opcode, which specifies what operation an instruction
performs, and 2) the operands, which specify the registers or memory locations used in
performing the operation.

For the purpose of this discussion, it is sufficient to consider a processor that only has 6
different opcodes; real processors often have hundreds of different opcodes, but many exist
for the sake of efficiency. We list them below:

ZERO_REGISTER: The ZERO_REGISTER instruction takes a single operand, the name of a
register, and it writes a zero into that register.

Example: ZERO REG rl (The contents of register r1 is overwritten with a zero.)



ADD: The ADD instruction takes three operands, all of which are names of registers. The
first two operands specify the values that should be added together -- we call these
"source"” operands. The first source must specify a register, but the second source can be
either a register or a small constant value specified in the instruction itself. The result of
the addition of these two values is written to the register specified by the third operand --
what we call the "destination” register.

Example: ADD «rl1 + r2 -> r3 (Thecontents of register rl is added to the contents
of register r2 and the result is stored in register r3.)

ADD r4 + 1 -> r4 (The contents of register r4 is added to the constant
1 and the result is written back to register r4 (overwriting the old value).)

SUB: The SUB instruction corresponds closely to the ADD instruction with 2 source
operands (one register value and either a second register value or a small constant) and
one destination register operand, but instead of adding together the two source operands,
the second is subtracted from the first. The result of this subtraction is stored in the
destination register.

Example: SUB r5 - r3 -> r2 (The contents of register r3 is subtracted from the
contents of register r5 and the result is written into register r2.)

LOAD: The LOAD instruction copies a value from memory into a register. It has two
operands -- one source register and one destination register -- and includes a small
constant in the instruction. The memory address from which to load is computed by
adding together the contents of the source register and the small constant. Because a
register holds 4 bytes, we copy not only the byte at the computed address, but also 3 bytes
that follow it in memory (address+1, address+2, and address+3). These 4 bytes are written
into the specified destination register. The values in memory do not change.

Example: LOAD rl <- [r4 + 8] (The contents of register r4 are added to the
value 8 to compute a memory address. If we assume that register r4 holds the value 20, then
this load would compute the address 28. The bytes stored at memory addresses 28, 29, 30,
and 31 would be copied to register r1.)

STORE: The STORE instruction copies a value from a register to memory. It has two source
register operands and includes a small constant. Like the LOAD instruction, the contents of
a register are added to the small constant to compute a memory address. The other source
register specifies the value to copied to the four bytes in memory starting at the computed
address. The values in the source registers do not change.

Example: STORE r7 -> [xr0 + 201 (The contents of register r0 (assume it held the
value 20) would be added to the constant 20 to compute the memory address 40. The



contents of register r7 would overwrite the values stored at memory locations 40, 41, 42, and
43.)

FOR ALL OF THE ABOVE: After executing any of the above instructions, the instruction
immediately after the current instruction should be executed. This is accomplished by
adding 2 to the value in the PC register, because each of these instructions is two bytes long
(as we'll see below).

In addition, anytime a general-purpose register is written (which occurs in the ZERO_REG,
ADD, SUB, and LOAD instructions), the condition code registers are also updated. The
condition codes are called N, Z, and P, which record whether the last value written to a
general-purpose register was Negative, Zero, and Positive, respectively. At all times,
exactly one of these registers will hold a 1 and the other two will hold the value 0. Which
register is set to 1 is based on the value written to the general-purpose register: if the value
was negative the condition codes will be set to N=1, Z=0, and P=0; if the value was zero,
N=0, Z=1, P=0; and if the value was positive, N=0, Z=0, P=1.

BRANCH: Unlike the previous instructions, the branch instruction doesn't read or write
general-purpose registers or memory; it reads only the condition codes and writes only the
PC register. Two pieces of information are specified as part of the branch: 1) which
condition codes should be checked, and 2) how many instructions to skip. If any of the
condition codes checked are set to one, then the branch will be TAKEN; otherwise, the PC is
set to the next sequential instruction (PC + 2). If the branch is taken, then the new PC is
computed as:

PC + 2 + 2(number of instructions to skip)
There are eight possible settings for the condition codes:

NZP = branch always

NZ =branch if value was LESS THAN OR EQUAL TO ZERO

NP =branch if value was NOT EQUAL TO ZERO

N  =branch if value was LESS THAN ZERO

ZP  =branch if value was GREATER THAN OR EQUAL TO ZERO
Z = branch if value was EQUAL TO ZERO

P = branch if value was GREATER THAN ZERO

- = branch never

Example: BR.NZ 1 (If the previously written value was either negative or zero -- i.e,, if
either the N or Z condition codes are set -- then set the PC to PC+4, skipping 1 instruction;
otherwise, continue to the next instruction by setting PC to PC+2.)

BR.NZP -16 (Always set the PC to PC-30; this instruction will always branch
because we're guaranteed that one of the N, Z, and P condition codes will be set.)



Storing Instructions in Memory:

Machine language instructions are expressed as binary numbers, just like any value stored
in memory. So, a machine language instruction is just a sequence of zeros and ones. Each
particular sequence encodes some particular instruction. In the machine we consider here,
every instruction is encoded in 16 bits, using the 4 most-significant bits to specify the
opcode. In addition to the opcode, each instruction specifies 0, 1, or 2 source registers
(labeled SR1, SR2 and BaseR) and 0 or 1 destination registers (DR), each of which takes 3
bits to specify because 3 bits are required to name the 8 possible registers (23 = 8). Some
instructions include a small signed constant value of 5, 6 bits (constant5 and offset6,
respectively). The branch instruction uses 3 bits to specify the condition codes (n, z, p) it
monitors and a signed number of instructions to skip (PCoffset9).

The instructions are encoded as follows:

1514131211 109 8 7 6 5 4 3 2 1 0

+ T T T T T T T T T T
ADD 0001 DR SR1 |0]| 00 SR2
1 1 1 1 1 1 1 1 1 1
+ T T T T T T T T T T T
ADD 0001 DR SR1 1 constants
1 1 1 1 1 1 1 1 1 1 1
I T T T T T
ZERO_REG 0101 DR |o|o|o|1|o]ojo]o]oO
1 1 1 1 1
T T T T T T T T T T T
BR 0000 nl|lzlp PCoffset9
1 1 1 1 1 1 1 1 1 1 1
+ T T T T T T T T T T T T
LOAD 0110 DR BaseR offset6
1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T
STO RE 0111 SR BaseR offset6
1 1
. — — — : —
SUB 0001 DR SR1 | 0| 00 SR2
1 1 1 1 1 1 1 1 1 1
+ T T T T T T T T T T T
SUB 0001 DR SR1 1 constants
1 1 1 1 1 1 1 1 1 1 1

There are two encodings for each of the ADD and SUB instructions since they can each
either take two source registers, or one source register and a small constant.

In the fetch part of the fetch-execute cycle, the address in the PC register is supplied to the
memory and 2 bytes (16 bits) are read and returned to the CPU. The CPU then inspects the
four opcode bits of the instruction to determine what operation will be performed and how
the remaining bits of the instruction should be interpreted.

Again, our intention in showing you the binary representation of instructions is to
demonstrate that instructions can be stored in memory (further demonstrating that there
is no magic in how a computer works). We in no way expect you to memorize these
encodings. Examples of instruction encodings are included with the code example below.

Example Code:

To demonstrate the execution of a machine language program, we use the following
algorithm written in pseudo-code, which find the highest quiz score from a series of quiz
scores:



1. get number_of_quizzes
2.count=0
3. highest_score = 0
4. while count < number_of_quizzes:
4.1 temp = get quiz grade
4.2 if temp > highest_score:
4.2.1 highest_score = temp
4.3 count=count+ 1
5. display highest_score

To demonstrate the execution of this program as a machine language program, we need to
perform two mappings: 1) we need to map the state of the algorithm (e.g., count,
highest_score) to locations in memory, and 2) we need to convert the algorithm to machine
code. The mapping of state is quite straight forward given our discussion of data
modelling; one mapping is shown below. (Note: we are assuming each of these values is
being stored in a 4-byte integer, so each value starts at an address 4 bytes after the previous
one.)

address

count a0

highest_score a4

num_quizzes a8

quizzes ail2
al6
a20
a24

Below (on the next page) we show the implementation of the algorithm as machine code.
Again, our goal here is not to teach you how to write machine code, but rather that
algorithms can be implemented in machine code and demonstrate their execution on a
simple processor. We have attempted to show the correspondence between the algorithm
and the machine code.



address

put a zero in a register
2.count=0
3. highest_score =0

I4. while count < num_quizzes:

(load count, load num_quizzes,
compare 2 values with subtract,
branch)

4.1 temp = get quiz grade
(load count, compute 4*count,
address = 16 + 4*count,
load "count"th quiz grade

4.2 if temp > highest_score:

(load highest_score,
| compare to temp w/subtract, branch) |

4.2.1 highest_score = temp

4.3 count = count + 1 |

(load count, add one,
store back to memory)

go back to "while"
5. display highest_score

Because it would be tedious to write up the execution of this code, view the video of the
professor manually executing this code. This example execution uses a collection of 3 quiz
scores (8, 5, 9). Based on the algorithm above, what would you expect would be the final

a100
al02
al04
al106
a108
ailio
all12
alil4
al16
ali8
al120
al122
al24
al26
al28
a130
al32
al34
a136
a138

zero_reg r1

store r1 -> [r1+0]

store r1 -> [r1+4]

load r2 <- [r1+0]

load r3 <- [r1+8]

subr3-r2->r4

br.nz 12

load r2 <- [r1+40]

addr2 +r2 ->r2

addr2 +r2 ->r2

load r3 <- [r2+12]

load r4 <- [r1+4]

subr3-r4 ->r5

br.nz 1

store r3 -> [r1+4]

load r2 <- [r1+40]

addr2 +1->r2

store r2 -> [r1+0]

br.pnz -16

(display ...)

binary representation

0101

0111

0111

0110

0110

0001

0000

0110

0001

0001

0110

0110

0001

0000

0111

0110

0001

0111

0000

001

001

001

010

011

100

110

010

010

010

011

100

101

110

011

010

010

010

111

000100000

001 000000

001 000100

001 000000

001 001000

011 0 00 010

000001100

001 000000

010 0 00 010

010 0 00 010

010 001100

001 000100

011 0 00 100

000000001

001 000100

001 000000

010 1 00001

001 000000

110000

value of highest_score? Does this match what the machine code execution computes?



