
CS125 : Introduction to Computer Science

Lecture Notes #11
Procedural Composition and Abstraction

c©2005, 2004 Jason Zych

1



Lecture 11 : Procedural Composition and Abstraction

Solving a problem...with help

Imagine I have a math problem I would like to solve. We’ll use an arithmetic arithmetic problem,
just to keep things simple, even if it will seem a little silly.

So, let’s imagine that I am faced with calculating the following value, but don’t know how, i.e.
perhaps I have no idea how to do certain arithmetic operations. Specifically, we will assume that I
know how to do addition, but that I do not know how to do subtraction, multiplication, or division.

(((2 + 5) * ((3 + 10) - 1)) / 6) + 7

Since I can perform addition, I can evaluate the values of the first two additions in the problem,
thus giving me:

I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

but I cannot perform the third addition, since I first need to know the value of the expression

((7 * (13 - 1)) / 6)

since that value is one of the operands of the addition. Since I do not know how to perform
subtraction, multiplication, or division, I cannot evaluate that expression, and thus cannot obtain
the first operand of the remaining addition.

So, now it’s time to call on friends for help. Let’s imagine I have a friend, named FriendA, who
knows how to do subtraction. Let’s send FriendA the subtraction part of our problem. The chain
of events so far is as follows:

I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

--------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

FriendA isn’t seeing the entire problem, but FriendA doesn’t need to! All FriendA cares about, is
that I have sent a subtraction problem. FriendA doesn’t need to know why I need the subtraction
done, in order to do the subtraction. FriendA can simply calculate the result, and send it back to
me. Likewise, I don’t need to know how FriendA does the work – I just need to send the problem
to FriendA, and receive the solution in return.

2



I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

-------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

[FriendA calculates]

FriendA has: 12

<------- FriendA sends back 12

and now, thanks to FriendA, I can replace the expression (13 - 1) with the expression 12:

I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

-------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

[FriendA calculates]

FriendA has: 12

<------- FriendA sends back 12

I have: ((7 * 12) / 6) + 7

Now, we’ve still got a multiplication and a division to deal with. I have no idea how to do those (or
so we are pretending), but I have a friend, FriendB, who claims to know how to do multiplication
and division. So, I send FriendB that part of the expression.

3



I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

-------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

[FriendA calculates]

FriendA has: 12

<------- FriendA sends back 12

I have: ((7 * 12) / 6) + 7

-------> I send FriendB: ((7 * 12 / 6)

FriendB has: ((7 * 12) / 6)

Now, perhaps FriendB knows how to do multiplication, but not division. FriendB lied to us!! But
fortunately for FriendB, we don’t need to find that out. This is because we’ve asked FriendB to
perform a task for us, but we don’t care how that task gets done. All we want is the correct answer
returned to us. So, FriendB could likewise ask for help, completely unbeknownst to us.

First of all, FriendB performs the multiplication, since FriendB knows how to do multiplication:

4



I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

-------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

[FriendA calculates]

FriendA has: 12

<------- FriendA sends back 12

I have: ((7 * 12) / 6) + 7

-------> I send FriendB: ((7 * 12 / 6)

FriendB has: ((7 * 12) / 6)

[FriendB calculates]

FriendB has: (84 / 6)

Next, since FriendB doesn’t know how to do division, FriendB asks another friend, FriendC, for
help:

5



I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

-------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

[FriendA calculates]

FriendA has: 12

<------- FriendA sends back 12

I have: ((7 * 12) / 6) + 7

-------> I send FriendB: ((7 * 12 / 6)

FriendB has: ((7 * 12) / 6)

[FriendB calculates]

FriendB has: (84 / 6)

------> FriendB sends FriendC: (84 / 6)

FriendC has: (84 / 6)

Note a few things here. Firstly, just as FriendA never saw the entire problem, likewise, FriendB
does not get to see the entire problem, and FriendC sees even less. That does not matter! All I
need from FriendB is to solve the part I sent to FriendB, just like all I needed from FriendA was
to solve the part I sent to FriendA. If FriendA is asked to solve (13 - 1), FriendA does not need
to know why I want that answer – FriendA just needs to give me the answer I am asking for. And
likewise, FriendB does not need to know why I need the answer to ((7 * 12) / 6) – FriendB
just needs to give me the answer I am asking for. And likewise, FriendC doesn’t need to know
why FriendB wants the answer to (84 / 6) – FriendC just needs to give FriendB the answer that
FriendB is looking for.

But likewise, this “secrecy” works in reverse as well! When I sent FriendA part of the original
problem, I didn’t care how FriendA got the answer. I just wanted the answer. So maybe FriendA
did all the work, or maybe FriendA asked someone else for help. Eitehr way, I don’t need to care.
I just need to ask FriendA for an answer to a problem, and then wait to receive that answer. And
similarly, when I ask FriendB for help, I don’t care how FriendB got the answer, as long as FriendB
sends the answer back to me. Whether FriendB can do all the work, or has to ask someone (such
as FriendC) for help, does not concern me. All I care about is that I sent a problem to FriendB
and that I get the answer back.

So, finishing our example, FriendC is able to return the answer 14 to FriendB:

6



I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

-------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

[FriendA calculates]

FriendA has: 12

<------- FriendA sends back 12

I have: ((7 * 12) / 6) + 7

-------> I send FriendB: ((7 * 12 / 6)

FriendB has: ((7 * 12) / 6)

[FriendB calculates]

FriendB has: (84 / 6)

------> FriendB sends FriendC: (84 / 6)

FriendC has: (84 / 6)

[FriendC calculates]

FriendC has: 14

<------ FriendC sends back 14

FriendB has: 14

and now FriendB can return that result back to me:

7



I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

-------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

[FriendA calculates]

FriendA has: 12

<------- FriendA sends back 12

I have: ((7 * 12) / 6) + 7

-------> I send FriendB: ((7 * 12 / 6)

FriendB has: ((7 * 12) / 6)

[FriendB calculates]

FriendB has: (84 / 6)

------> FriendB sends FriendC: (84 / 6)

FriendC has: (84 / 6)

[FriendC calculates]

FriendC has: 14

<------ FriendC sends back 14

FriendB has: 14

<------ FriendB sends back 14

I have: 14 + 7

at which point I can finally complete the last addition and finish the evaluation of the original
expression:

8



I have: (((2 + 5) * ((3 + 10) - 1)) / 6) + 7

[I calculate]

I have: ((7 * (13 - 1)) / 6) + 7

-------> I send FriendA: (13 - 1)

FriendA has: (13 - 1)

[FriendA calculates]

FriendA has: 12

<------- FriendA sends back 12

I have: ((7 * 12) / 6) + 7

-------> I send FriendB: ((7 * 12 / 6)

FriendB has: ((7 * 12) / 6)

[FriendB calculates]

FriendB has: (84 / 6)

------> FriendB sends FriendC: (84 / 6)

FriendC has: (84 / 6)

[FriendC calculates]

FriendC has: 14

<------ FriendC sends back 14

FriendB has: 14

<------ FriendB sends back 14

I have: 14 + 7

[I calculate]

I have: 21

9



This concept we are illustrating, is known as procedural abstraction. It is a kind of abstraction in
which you hide away the details of how a particular task is done. Something/someone else worries
about how the details of the work are done, and all you need to do is ask that something or someone,
“please do this work for me” and then wait for the work to get done (and if you are waiting for an
answer of some kind, wait for that something or someone to return your answer).

Because of the idea of procedural abstraction, it is not necessary for you to worry about every
single detail of a computation. In the example above, I didn’t worry about any of the details of the
subtraction, multiplication, or division – for each of those tasks, I sent those problems to someone
else and awaited my answer. And even though I did a little bit of the work in our example above
(the addition work), there were details that I didn’t worry about – I sent sections of the problem
to other friends and waited for their answers, without worrying about how those friends were doing
the work. In this way, I was able to get the value of a complex arithmetic expression, without
knowing any arithmetic other than addition.

You have already used this same idea in your own MPs. When you have printed something to
the screen, you sent the value you wanted to print, to a System.out.println or
System.out.print statement. You didn’t worry about the specifics of how that
System.out.println or System.out.print statement did its work – you just typed the state-
ment and trusted that the statement would do what it was supposed to do. Similarly, you didn’t
need to type a lot of code in order to input a value. You just typed Keyboard.readInt() or
Keyboard.readDouble() or Keyboard.readChar(), and trusted that that expression would work
as we said it would, and would do the work of obtaining your input value and sending it back to
you, even if you have no idea how that task is actually working behind the scenes.

Again, this is how abstraction helps us. Since you are freed from having to worry about every
little detail, you have more time to focus on the “big picture” and develop that further.

We can also relate this example to how the machine implements procedural abstraction. To do
this, let’s go through the example again, but let’s pretend that there is a common sheet of scratch
paper that FriendA, FriendB, FriendC, and I are using:

Column 1 Column 2 Column 3 Column 4

10



I receive the initial problem, and start working in column 1 of the scratch paper:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7

After I perform the two additions I can do, I have reduced the problem further:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7
...some work done...
((7 * (13 - 1)) / 6) + 7

At this point, I needed to ask FriendA for help. So I will write the problem I need FriendA to
solve, at the top of column 2 – thus showing FriendA where that scratch work should be done –
and then I will pass the scratch paper to FriendA.

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 (13 - 1)
...some work done...
((7 * (13 - 1)) / 6) + 7

Note now that I cannot do anymore work for the time being. This is because FriendA has the scratch
paper! There wasn’t any other arithmetic I could do anyway, but even if there was, I am forced to
sit around waiting for FriendA to finish, since FriendA has the scratch paper and I do not. This is
similar to how, in your programs, when you call Keyboard.readInt() or System.out.println(),

11



your program sits there and waits for the Keyboard.readInt() call or the System.out.println()
call to finish, before continuing. Likewise, I cannot continue until FriendA finishes and gives me
back the scratch paper.

Likewise, we will assume FriendA does NOT work in column 1, and we will further assume that
FriendA does not even look at the work I have written in column 1. We have told FriendA to work
in column 2, and so that is where FriendA works. And what FriendA does is to perform whatever
scratch work is needed to figure out that (13 - 1) is 12:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 (13 - 1)
...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 12

Now that FriendA has completed the calculation, FriendA must do three things. First, FriendA
must notify us of the final answer, by writing the answer in our column:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 (13 - 1)
...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 12
12 <--- answer from FriendA

Second, FriendA should erase column 2. After all, I might want to give this scratch paper to
someone else later on. If FriendA is not using that area of the scratch paper anymore, than erasing
all the remarks there, so that the area is free for someone else to use, seems to be the right thing

12



to do. To leave all the now-useless remarks there, taking up space, would be wasteful:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7
...some work done...
((7 * (13 - 1)) / 6) + 7
12 <--- answer from FriendA

Finally, FriendA should give the scratch paper back to me! Now, finally, I can do some work again,
just like when Keyboard.readInt() finishes its job and reports the input integer to your program.
In that situation, your program can then finally resume work where it had paused while waiting
for the Keyboard.readInt() call to finish, and likewise, now that I have the scratch paper again,
I can make use of the value that FriendA gave me, to reduce my expression further. This work is
of course done in column 1, since that’s where I do my work:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7
...some work done...
((7 * (13 - 1)) / 6) + 7
12 <--- answer from FriendA
((7 * 12) / 6) + 7

Note that not only did FriendA not mess with anything in column 1 (aside from writing in the
result value in the end, and noting it was the result value), but in addition, I cannot move to
column 2 and mess with any of the work FriendA did. First of all, that work has been erased, and
is thus completely gone; secondly, I am supposed to stay in column 1 anyway.

Now, the next step was to pass the multiplication and division to FriendB. I will again use
column 2 for this, since it is the column right next to where I am working, and it is (and should
be) free and available for this purpose. So, I will write the problem I am handing to FriendB, at
the top of column 2, and then will hand the scratch paper to FriendB. As with FriendA, when
FriendB is working on the problem, I do not have the scratch paper, and so I cannot do anything.
And similarly, as with FriendA, FriendB will know to only do work in the designated column, and

13



will know to NOT mess with my work in column 1.

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 ((7 * 12) / 6)
...some work done...
((7 * (13 - 1)) / 6) + 7
12 <--- answer from FriendA
((7 * 12) / 6) + 7

So what we see here is that our columns are available for general use. Just because FriendA
was using column 2 for scratch earlier, doesn’t mean we can’t use it now for FriendB. After all,
FriendA was finished with the subtraction work, and with column 2, and thus erased everything
from column 2! So if column 2 is sitting there unused, why shouldn’t FriendB go ahead and use
it? There’s no reason not to! If I am working in column 1, then when it’s time to have a friend
help me out, I just have that friend work in the open column to my right – column 2, in this
case. Regardless of whether that scratch work is scratch work for FriendA who does subtraction,
or FriendB who does multiplication and division, if column 2 is the next open column, then when
I pass work off to a friend, that’s the column my friend will use.

FriendB will then do some multiplication work in an attempt to reduce the expression to
something simpler:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 ((7 * 12) / 6)
...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 (84 / 6)
12 <--- answer from FriendA
((7 * 12) / 6) + 7

And now FriendB is stuck. This is where FriendB had to turn for help to FriendC, and that is
exactly what happens here. FriendB will do the same thing I did – write the problem for which
help is needed, at the top of the next open column, and then pass the scratch paper to someone

14



who will work on that problem – in this case, FriendC:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 ((7 * 12) / 6) (84 / 6)
...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 (84 / 6)
12 <--- answer from FriendA
((7 * 12) / 6) + 7

What has happened here is, FriendC needs a scratch column, just as I did, and just as FriendA
and FriendB did. But right now, not only is column 1 taken, but column 2 is taken as well. This
does not matter!. FriendC can use any column for scratch work; it just so happened before, that
column 2 was always the next available open column. Right now, column 3 is the next available
open column, so that is the column that gets used by FriendC instead. Either way, FriendC still
gets a scratch area to work in. Whether it is me doing work, FriendA doing work, FriendB doing
work, or FriendC doing work, none of us care which particular column we do our work in. We only
care that we get some column – whichever one it might be – to do our work in. So the easiest thing
to do is to just use the leftmost column that is not in use; I used column 1, people who I asked for
help used column 2, and anyone they ask for help, uses column 3. If FriendC were to ask for help,
then that person would use column 4, since that is the next available column.

This is an important concept! Someone can use any column that is convenient as their scratch
column. FriendA, for example, is not bound to always use column 2; FriendA only used column
2 since the person using column 1 (me) was the one who asked for help. If FriendC had sub-
traction to do, and asked FriendA for help, FriendA would proceed to work in column 4 – and
yet doing subtraction, the same kind of work FriendA had done for me in column 2. Similarly,
when you actually write Java code, any collection of Java instructions such as the instructions to
make Keyboard.readInt() work or the instructions to make System.out.println() work, will use
whatever area of memory is to the right of where the program had just been working. In the case of
your programs so far, you called Keyboard.readInt() from main(), and so whatever area of mem-
ory main() had used for its variables, if you then call Keyboard.readInt(), Keyboard.readInt()
will use the area of memory next to the area being used by main(), to do any scratch work that
Keyboard.readInt() needs to do. It is the same when you call System.out.println(). Every
time you ask another piece of code to do some work for you, that piece of code just uses the
next available memory to the right of where you were working, to do its job – and then releases
that memory once the code is done. Whatever area of memory Keyboard.readInt() is using,
Keyboard.readInt() erases that memory and gives it back to the system when it is done and
returning back to main(), just like FriendA erased column 2 just before handing the scratch paper
back to me.

That is, your Java code will not be bound to run in a particular area of memory, but rather,
will run in whatever area is most convenient. (You don’t need to worry about that level of detail,
but it will help you if you realize that concept.)

Continuing on with our example, FriendC will perform the work needed to figure out the result

15



of the division:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 ((7 * 12) / 6) (84 / 6)
...some work done... ...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 (84 / 6) 14
12 <--- answer from FriendA
((7 * 12) / 6) + 7

And now FriendC will do the same thing that FriendA did earlier. First, FriendC will return the
result, to the person who had asked for help – namely, FriendB in column 2:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 ((7 * 12) / 6) (84 / 6)
...some work done... ...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 (84 / 6) 14
12 <--- answer from FriendA 14 <--- answer from FriendC
((7 * 12) / 6) + 7

Next, FriendC will erase all the scratch work in column 3, since now FriendC is done, and there is
no sense cluttering up a column someone else could use, with scratch work that no longer serves a
purpose:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 ((7 * 12) / 6)
...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 (84 / 6)
12 <--- answer from FriendA 14 <--- answer from FriendC
((7 * 12) / 6) + 7

And finally, FriendC will return the scratch paper back to FriendB, and FriendB can resume work
now that both the scratch paper, and the needed result value, have been returned.

Now, all FriendB has left to do, is to recognize that the result given by FriendC, is the final

16



answer that FriendB needed:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 ((7 * 12) / 6)
...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 (84 / 6)
12 <--- answer from FriendA 14 <--- answer from FriendC
((7 * 12) / 6) + 7 14

And now FriendB can prepare to return back to me. First, FriendB tells me what the result is:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7 ((7 * 12) / 6)
...some work done... ...some work done...
((7 * (13 - 1)) / 6) + 7 (84 / 6)
12 <--- answer from FriendA 14 <--- answer from FriendC
((7 * 12) / 6) + 7 14
14 <--- answer from FriendB

Note that I got my result from FriendB, not FriendC. In fact, since I have no idea what FriendB
did to get this result, I don’t even have any idea FriendC was ever involved.

Second, FriendB erases column 2, since now FriendB is done and so there’s no point in keeping
column 2 cluttered up with completed work when someone else could use that column in the future:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7
...some work done...
((7 * (13 - 1)) / 6) + 7
12 <--- answer from FriendA
((7 * 12) / 6) + 7
14 <--- answer from FriendB

And finally, FriendB hands the scratch paper back to me, and I can resume my own work where I

17



left off. Since I now know the result of the first addition operand, I can make a substitution:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7
...some work done...
((7 * (13 - 1)) / 6) + 7
12 <--- answer from FriendA
((7 * 12) / 6) + 7
14 <--- answer from FriendB
14 + 7

And after some calculation work, I can complete the final addition – and with it, finish the evaluation
of the expression:

Column 1 Column 2 Column 3 Column 4
(((2 + 5) * ((3 + 10) - 1)) / 6) + 7
...some work done...
((7 * (13 - 1)) / 6) + 7
12 <--- answer from FriendA
((7 * 12) / 6) + 7
14 <--- answer from FriendB
14 + 7
...some work done...
21

Now that I know the result of the expression, I can note it somewhere, and erase column 1 so
that column 1 can be used for a different bunch of scratch work the next time I need to do some
calculation work in the future:

Column 1 Column 2 Column 3 Column 4

<--- result : 21

So that is an example of how different areas of memory (different columns, in our example)
can get used by various sets of instructions. Any particular set of instructions (such as main() or
Keyboard.readInt()) can make use of any empty area of memory. And as the instructions run,
when a new area of memory is needed in order to run a new set of instructions, we just move over

18



to the right, to the closest-available empty area and use that. And when any set of instructions
has finished, the memory that was being used by those instructions is erased and can be re-used
by a different set of instructions in the future.

19


