1. Recursive Concepts – 15 points (5+5+5)

What is the program output of mysteryA(7)? 7, 4, 1, 1, 4, 2, 2, 7,
Circle the correct response: mysteryA is an example of a TREE of activations.

(1) Which line in the above code implements a recursive case? 2

(2) Decide if each statement is true or false for mysteryB? Circle (or write in) the correct response.

A. It is tail recursive. True / False
B. It is an example of a chain of activations. True / False
C. It is an example of an infinite loop when n is negative. True / False (∞ R.)
D. The variable s is shared over all activations. True / False

Complete the following recursive code that counts the number of digits of an integer that are 6 or greater. For example, count(471629034) returns 3. Hint n%10 and n/10 may be useful.

```java
public static int count(int n){
    if(n<6) return 0;
    if(n<10) return 1; //6,7,8,9
    return count(n/10) + count(n%10);
}
```

2. Tracing Code – 15 points (3+2+10)

```java
public static int foo(int a, int b){
    if (a == b) return b;
    if (a > b) return 2 * foo(a - 2,b - 1);
    return a + foo(a + 9,b + 1);
}
```

a. (i) Carefully explain why foo is an example of forward recursion. (ii) Underline or circle the relevant mathematical operators in foo that support your answer.

Line3 and Line 4: Addition and multiplication operations (underlined) after recursive call completes. Note underlining/circling "a+9,b+1" or "a-2,b-1" is INCORRECT.

b. Which one of the following statements is true for the execution of foo(3, 3)? E

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>line3</td>
<td>line4</td>
</tr>
<tr>
<td>Addition and multiplication operations support forward recursion.</td>
<td></td>
</tr>
</tbody>
</table>

C. Create an activation diagram below for the execution of foo(0, 5). For full marks ensure your activation diagram includes:

A. The method parameter values for each execution of foo.
B. Label the return arcs with the returned value, including the returned value of foo(0, 5).
C. Use your diagram to determine the returned value of foo(0, 5) and write it here: 24
D. How many times is foo activated (called), including the first foo(0, 5)? 5 activations

5 activations (return values not shown):(0 5) - (9 6) - (7 5) - (5 4) - (3 3)

3. Linked Lists – 15 points (5+5+5)

```java
public Link insert(int v) {
    if( v < this.value) return new Link( v, this);
    if( next != null) next = next.insert(v);
    else next = new Link( v, null);
    return this; //we don't need to move.
}
```

```java
public int sub2(int acc) {
    acc++;
    value -= 2;
    if(acc <4 && next != null) return value + next.sub2(acc);
    return value;
}
```

```java
public Link check() {
    if(next == null) return null;
    if(value > next.value) return this;
    return next.check();
}
```
4. The Recursive Car Mechanic – 15 points (8 + 7)

```java
int max(){
    int m = 0;
    if(yes != null) m = yes.max();
    if (no != null) m = Math.max(m,no.max());
    return 1 + m;
}
public Question find() {
    if((yes == null || no == null ) && question.indexOf("door") != -1) return this;
    if(yes!=null) {Question q = yes.find(); if(q!=null) return q;}
    if(no != null) return no.find();
    return null;
}
```

5. The SMS Explainer with a Binary Search Twist – 15 points (10 + 5)

```java
public class Lookup {
    public static Pair search(Pair[] data, String key, int lo, int hi){
        if(lo>hi) return null;
        int mid = (lo + hi)/2; // OK if lo,hi not too big
        String s = data[mid].sms;
        if(s.equals(key) return data[mid];
        if(s.compareTo(key)<0) return search(data,key,mid+1,hi);
        return sear
        }
    public static String toPhrase(Pair[] data, String key) {
        Pair p = search(data,key,0, data.length -1);
        if(p != null) return p.phrase;
        return ";
    }
```

6. Recursion? See Question 6! - 15 points (3+3+3+3+3)

```java
public static int count(int[] data, int max, int lo, int hi) {
    if(lo>hi) return 0; // Overshot! (can return 0 because lo != hi)
    int c = count(data,max,lo+1,hi);
    if(data[lo] <= max) return 1 + c;
    return c;
}
```

b. Using a binary search each time you make a comparison against the key....
 N = 7

c. "A simple linear search of all values stored... is not sorted by the key value"

d. // "Fails when the min value is only at the last link."

```java
Link findLast(Link result) {
    if(value == 0)  result = this
    if(next != null) return next.findLast(result);
    else return result;
}
```

7. Selection Sort – 10 points (3 + 4 + 3)

```java
public static void swap(double[] data, int i, int j) {
    double t = data[i];
    data[i] = data[j];
    data[j] = t;
}
public static void sort(double[] data, int lo, int hi) {
    if(lo<hi) { swap(data,lo, findMin(data,lo,hi)); sort(data,lo+1,hi);}
}
public static void selectionSort (double[] data) {
    sort(data,0,data.length -1);
}
```