
CS125 Third Midterm Exam Fall 2008

University of Illinois at Urbana-Champaign
 Department of Computer Science

Third Examination
CS 125 Introduction to Computer Science

90 minutes permitted

Name: ___________________

NetID: _ _ _ _ _ _ _ _ _
(this is the username part of your @illinois.edu email address – please write legibly)

Lab Section (Day/Time & Code): ________ ______

• The exam proctors will not answer any technical questions. If you believe a question is
ambiguous, write your assumptions on your sheet and answer accordingly.

• This is a closed book and closed notes exam. No electronic aids are allowed.

• This exam tests your understanding of recursion: Unless specifically instructed you
may not use loops (for/while/do-while) in this exam.

• You are not allowed to use the break, continue, or switch statements on this exam.

• Unless we say otherwise in the specific problem, you can assume all values entered by
the user will be acceptable input for that program.

• When you write code, you may use a shorthand for System.out and TextIO input and
output methods provided it is obvious to the graders which method you are using. For
example it is acceptable to use Sopln in place of System.out.println and to use Sopt in
place of System.out.print Likewise, you can use T.rlnI(), T.rlnC(), and T.rlnD() in place of
TextIO.readlnInt(), TextIO.readlnChar(), and TextIO.readlnDouble().

• For full marks correct syntax is required: Ensure all statements include a semicolon
and the correct use of upper/lower case, single quotes and double quotes.

Problem Points Score Grader

 1 10
2 15
3 15
4 15
5 15
6 15
7 15

Total 100

NetID: __________

CS125 Third Midterm Exam Fall 2008 Page 2 of 8

1. Recursive Concepts – 10 points (2 points each)

Consider the following code that is supposed to recursively count how many ways a particular
spaghetti brand can break into two.

public static int split(int len) {

 // Split even spaghetti into two pieces:
 if(len % 2 == 0)
 return split(len/2) + split(len/2);

// else split odd spaghetti by one segment:
 return 1 + split(len -1);

}

a. What is the most significant oversight / error in the above code?

b. When would you expect to see a problem - When you compile and / or execute in a Java
Virtual Machine? (Circle the correct answers)

i) Compile Problem? Yes / No

ii) Execution Problem? Yes / No

c. Is the following tail- or forward- recursive? Briefly explain your answer.

int count(int x) {
 if(x<=0) return 0;
 return 1 + count(x - 1);
}

d. Circle and briefly explain one of the following CS125 terms:

Unit test

Single step debugging

Checkout

e. In MP7, two DNA sequences are represented as character arrays and recursively
compared using which conceptual idea? (Circle the correct answer)

 Shortest Common Dictionary Longest Common Subsequence

 Longest Alpha Chain Greatest Ribonucleotide Factorial

NetID: __________

CS125 Third Midterm Exam Fall 2008 Page 3 of 8

2. Tracing code – 15 points
Consider the following method:

public class SecretFunction {
 public static int munge(int x) {
 if (x == 0 || x == 1) {
 return 1;
 }
 if (x < 0) {
 return 2 * munge(-x/2);
 }
 return x + munge(x/2) + munge(2-x);
 }
}

a. Draw the activation diagram for the execution of munge(3) and answer the two questions
below. The activation diagram should include nodes (with the method parameter) for each
execution of the munge method, and arcs between nodes for calls and returns. Return arcs
should include the returned value.

b. Result of munge(3) ? _________

c. How many times is munge activated (called),
including munge(3) ?_________

NetID: __________

CS125 Third Midterm Exam Fall 2008 Page 4 of 8

3. Linked Lists – 15 points

Complete the following LinkedList class by writing two recursive instance methods:

a. isListSorted: returns true if for all links in the list the value of the next link is equal or

greater than the current link; returns false otherwise.

b. countAboveThreshold: count the number of items in the linked list whose "value" is

larger than the provided threshold.

Do not use any loops in this class!
public class LinkedList {
 private double value;
 private LinkedList next;

 public boolean isListSorted() {

 }
 public int countAboveThreshold(double threshold) {

 }
 … Constructor code not shown.
} // End of LinkedList class

NetID: __________

CS125 Third Midterm Exam Fall 2008 Page 5 of 8

4. Maze Exploration – 15 points

Read the given code and comments below then create the recursive class method 'count' to
return the total number of routes from position (x,y) to position (tx,ty). Determine the method
type, parameters and return type from the given code. A route consists of zero or more
'Compass' moves: Each move can increment or decrement the x or y value by one but not
both at the same time. Valid routes do not visit a blocked square (walls[x][y] is true), or
visit locations outside of (0,0) …(size-1,size-1), or visit the same (x,y) square twice as part of
the same route. Assume the start and end locations are not blocked by a wall.
public class Maze {
 public static void main(String[] args){
 int size = …; // Assume 1 < size <100
 boolean[][] walls = generateMaze(size);
 // if wall[x][y] is true then (x,y) is a wall and not part of a route.
 boolean[][] blocked = new boolean[size][size];
 // The array 'blocked' is used to prevent infinite recursion-
 // i.e. Do not recursively explore part of the current route.
 int x =… , y=… , tx=… , tz= … ;
 // Assume variable values are between 0 … size-1
 int result = count(x,y, tx,ty, walls,blocked);
 System.out.println("Number of routes:"+result);
 }
 public static boolean[][] generateMaze(int size) {
 boolean[][] result = new boolean[size][size];
 // The four edges are always continuous walls:
 for(int i=0;i<size;i++) {
 result[i][0] = result[i][size-1] = true;
 result[0][i] = result[size-1][i] = true;
 }
 Rest of generateMaze method not shown …
 }

NetID: __________

CS125 Third Midterm Exam Fall 2008 Page 6 of 8

5. Binary Search – 15 points
You need to search a sorted array of Person objects.

public class Person{
 private int age;
 private String name;
 public int getAge() {return age;}
 public String toString() {return name+"("+age+")"; }
 … Constructor code not shown.
}

a. Complete the following recursive binary search method to quickly find and return a
Person of a particular age. Use a 'divide and conquer' approach by exploiting the fact that the
array is sorted by increasing age. All people have unique ages. Search the array only between
loth and hith indices. Return 'null' if no person matches the search age. All entries in the array
are valid and non-null.

Notice the search method is in a different class than Person. Do not use loops.
class Util {
 public static Person search(Person[] people, int age, int lo,
 int hi) {

b. Create a non-recursive public class method exists that takes two parameters - an array
of Person objects and an int, the search age. This method delegates most of the
computation to the recursive method search above and returns true if the array contains a
person of the given age, false otherwise.

Write your method here:

NetID: __________

CS125 Third Midterm Exam Fall 2008 Page 7 of 8

6. Recursive Searching and Sorting Concepts – 15 points

a. Complete the following recursive method to return the index of the smallest value of all
entries data[lo], data[lo+1] up to and including data[hi].
Do not use any loops. The data is not sorted. Assume 0 <= lo <= hi < data.length and the
array values are distinct.

public static int findMin(double[] data, int lo, int hi) {

}

b. For the following code how many times is findMin activated; i.e. how many times is it
called, including the recursive cases and the call below?

 double[] d1000 = { 5., 3. , 11., 1., 10, 11, … 994 more entries };
 int pos = findMin(d1000, 0, 5);

Your Answer: ______

c. Which one of the following best describes the Selection Sort algorithm?

A. Using a pivot value partition the array into two sub arrays (all values lower and
all values higher than the pivot value)

B. Divide the array into two: Recursively sort the two pieces independently then
merge together the two sorted sub arrays into one.

C. Find the next smallest value from the unsorted values and move it to the end
of the sorted values.

D. Take the next value from the unsorted values and insert it into the correct
position, moving previously sorted values to make room.

Your Answer: _______

d. Consider the following array of 10 values for sorting using Selection sort (low to high).
6 2 10 16 4 52 54 7 60 58

Calculate the values in the array after the 4th swap has completed. Write your answer below:

e. Once all of the values have been sorted and all swaps have completed,

 How many times has the value '6' moved to a new position? ______

 How many times has the value '60' moved to a new position? ______

NetID: __________

CS125 Third Midterm Exam Fall 2008 Page 8 of 8

7. Sorting Implementation – 15 points

The following code has many errors and omissions. Fix the three methods below to correctly
implement a recursive selection sort so the code matches the behavior described in the
comments. You may assume the findMin method is correctly implemented.

/** A wrapper method to sort the entire array.*/
public static void sort (double[] data) {

}
/** Sorts all data values between lo and hi (inclusive) using a recursive
selection sort.*/
public static void sort(double[] data, int lo, int hi) {

 // findMin(double[], int lo, int hi) is implemented on the previous page
 int minPos = findMin(data,

}

/** Swaps values data[i] and data[j] */
public static void swap(double[] data, int i, int j) {

 data[i] = data[j];

 data[j] = data[i];

}

END OF CS125 EXAM
CHECK YOUR WORK

ENSURE YOUR NETID IS ON EVERY PAGE

