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(this is the username part of your @illinois.edu email address – please write legibly) 
 

Lab Section (Day/Time & Code): ________    ______ 
 
• The exam proctors will not answer any technical questions. If you believe a question is 
ambiguous, write your assumptions on your sheet and answer accordingly. 
 

• This is a closed book and closed notes exam. No electronic aids are allowed. 
 

• This exam tests your understanding of recursion: Unless specifically instructed you 
may not use loops (for/while/do-while) in this exam. 
 

• You are not allowed to use the break, continue, or switch statements on this exam. 
 

• Unless we say otherwise in the specific problem, you can assume all values entered by 
the user will be acceptable input for that program. 
 

• When you write code, you may use a shorthand for System.out and TextIO input and 
output methods provided it is obvious to the graders which method you are using. For 
example it is acceptable to use Sopln in place of System.out.println and to use Sopt in 
place of System.out.print Likewise, you can use T.rlnI(), T.rlnC(), and T.rlnD() in place of 
TextIO.readlnInt(), TextIO.readlnChar(), and TextIO.readlnDouble(). 
 

• For full marks correct syntax is required: Ensure all statements include a semicolon 
and the correct use of upper/lower case, single quotes and double quotes.  

 
Problem Points Score Grader 

 1  10   
2  15   
3  15   
4  15   
5  15   
6  15   
7 15   

Total 100   
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1. Recursive Concepts – 10 points  (2 points each) 
 
Consider the following code that is supposed to recursively count how many ways a particular 
spaghetti brand can break into two.  
 
public static int split(int len) { 
 

 // Split even spaghetti into two pieces: 
 if( len % 2 == 0 )  
 return split(len/2) + split(len/2); 
  
// else split odd spaghetti by one segment: 
 return 1 + split(len -1); 

} 
 
a. What is the most significant oversight / error in the above code? 
         
 
 
 
b. When would you expect to see a problem - When you compile and / or execute in a Java 
Virtual Machine? (Circle the correct answers) 
 
i)  Compile Problem?   Yes      /     No  
 
ii) Execution Problem? Yes      /     No 
       
c. Is the following tail- or forward- recursive? Briefly explain your answer.  
 
int count(int x) { 
 if(x<=0) return 0; 
 return 1 + count(x - 1);  
} 
 
d. Circle and briefly explain one of the following CS125 terms: 
 
Unit test 
 
Single step debugging 
 
Checkout 
  
e. In MP7, two DNA sequences are represented as character arrays and recursively 
compared using which conceptual idea?  (Circle the correct answer) 
 
 Shortest Common Dictionary   Longest Common Subsequence   
 
 Longest Alpha Chain     Greatest Ribonucleotide Factorial 
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2. Tracing code  – 15 points 
Consider the following method: 
 
public class SecretFunction { 
 public static int munge(int x) { 
  if (x == 0 || x == 1) { 
   return 1; 
  } 
  if (x < 0) { 
   return 2 * munge(-x/2); 
  } 
  return x + munge(x/2) + munge(2-x); 
 } 
} 
 
a. Draw the activation diagram for the execution of munge(3) and answer the two questions 
below.  The activation diagram should include nodes (with the method parameter) for each 
execution of the munge method, and arcs between nodes for calls and returns.  Return arcs 
should include the returned value. 
 

b. Result of munge(3) ? _________ 
 
 

c. How many times is munge activated (called),     
including munge(3) ?_________ 
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3. Linked Lists – 15 points 
 
Complete the following LinkedList class by writing two recursive instance methods: 
 
a. isListSorted: returns true if for all links in the list the value of the next link is equal or 

greater than the current link; returns false otherwise. 
 
b. countAboveThreshold: count the number of items in the linked list whose "value" is 

larger than the provided threshold. 
 

Do not use any loops in this class! 
public class LinkedList { 
  private double value; 
   private LinkedList next; 
 
 public boolean isListSorted() { 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 } 
 public int countAboveThreshold(double threshold) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 } 
  … Constructor code not shown. 
} // End of LinkedList class 
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4. Maze Exploration  – 15 points 
 
Read the given code and comments below then create the recursive class method 'count' to 
return the total number of routes from position (x,y) to position (tx,ty). Determine the method 
type, parameters and return type from the given code. A route consists of zero or more 
'Compass' moves: Each move can increment or decrement the x or y value by one but not 
both at the same time. Valid routes do not visit a blocked square (walls[x][y] is true), or 
visit locations outside of (0,0) …(size-1,size-1),  or visit the same (x,y) square twice as part of 
the same route. Assume the start and end locations are not blocked by a wall.  
public class Maze { 
  public static void main(String[] args){ 
  int size = …; // Assume 1 < size <100 
    boolean[][] walls = generateMaze(size);  
  // if wall[x][y] is true then (x,y) is a wall and not part of a route. 
  boolean[][] blocked = new boolean[size][size]; 
  // The array 'blocked' is used to prevent infinite recursion- 
  // i.e. Do not recursively explore part of the current route. 
   int x =… , y=… , tx=… , tz= … ;  
  // Assume variable values are between 0 … size-1 
  int result = count(x,y, tx,ty, walls,blocked); 
  System.out.println("Number of routes:"+result); 
 } 
  public static boolean[][] generateMaze(int size) { 
  boolean[][] result = new boolean[size][size]; 
  // The four edges are always continuous walls: 
  for(int i=0;i<size;i++) { 
     result[i][0] = result[i][size-1] = true; 
     result[0][i] = result[size-1][i] = true; 
  } 
  Rest of generateMaze method not shown … 
 } 
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5. Binary Search – 15 points 
You need to search a sorted array of Person objects. 
 
public class Person{ 
 private int age; 
 private String name; 
 public int getAge() {return age;}  
 public String toString() {return name+"("+age+")"; } 
 … Constructor code not shown. 
} 
 
a. Complete the following recursive binary search method to quickly find and return a 
Person of a particular age. Use a 'divide and conquer' approach by exploiting the fact that the 
array is sorted by increasing age. All people have unique ages. Search the array only between 
loth and hith indices. Return 'null' if no person matches the search age. All entries in the array 
are valid and non-null. 
 
Notice the search method is in a different class than Person. Do not use loops. 
class Util { 
 public static Person search(Person[] people, int age, int lo,  
        int hi) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. Create a non-recursive public class method exists that takes two parameters - an array 
of Person objects and an int, the search age. This method delegates most of the 
computation to the recursive method search above and returns true if the array contains a 
person of the given age, false otherwise. 
 
Write your method here:
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6. Recursive Searching and Sorting Concepts – 15 points 
 
a. Complete the following recursive method to return the index of the smallest value of all 
entries data[lo], data[lo+1] up to and including data[hi].  
Do not use any loops. The data is not sorted. Assume 0 <= lo <= hi < data.length and the 
array values are distinct. 
 
public static int findMin(double[] data, int lo, int hi) { 
 
 
 
 
 
 
 
 
 
} 
 
b. For the following code how many times is findMin activated; i.e. how many times is it 
called, including the recursive cases and the call below? 
 
 double[] d1000 = { 5., 3. , 11., 1., 10, 11, … 994 more entries }; 
 int pos = findMin(d1000, 0, 5); 

Your Answer: ______ 
 
 
c. Which one of the following best describes the Selection Sort algorithm? 

A. Using a pivot value partition the array into two sub arrays (all values lower and 
all values higher than the pivot value) 

B. Divide the array into two: Recursively sort the two pieces independently then 
merge together the two sorted sub arrays into one. 

C. Find the next smallest value from the unsorted values and move it to the end 
of the sorted values.  

D. Take the next value from the unsorted values and insert it into the correct 
position, moving previously sorted values to make room. 

Your Answer: _______ 
 
d. Consider the following array of 10 values for sorting using Selection sort (low to high). 
6 2 10 16 4 52 54 7 60 58 
 
 
 
 
Calculate the values in the array after the 4th swap has completed. Write your answer below: 
 
 

         

 
e. Once all of the values have been sorted and all swaps have completed, 

 How many times has the value '6' moved to a new position?  ______  
 

  How many times has the value '60' moved to a new position? ______ 
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7. Sorting Implementation – 15 points 
 
The following code has many errors and omissions. Fix the three methods below to correctly 
implement a recursive selection sort so the code matches the behavior described in the 
comments. You may assume the findMin method is correctly implemented. 
 
/** A wrapper method to sort the entire array.*/ 
public static void sort (double[] data) { 
  
 
 
 
 
 
} 
/** Sorts all data values between lo and hi (inclusive) using a recursive 
selection sort.*/ 
public static void sort(double[] data, int lo, int hi) { 
 
 
 // findMin(double[], int lo, int hi) is implemented on the previous page 
 int minPos = findMin(data,   
 
 
  
 
 
 
     
 
 
} 
 
 
 
 
 
 
 
 
/** Swaps values data[i] and data[j] */ 
public static void swap(double[] data, int i, int j) { 
 
 
 data[i] = data[j]; 
 
 
 data[j] = data[i]; 
 
 
} 
 

END OF CS125 EXAM 
CHECK YOUR WORK 

ENSURE YOUR NETID IS ON EVERY PAGE 
 
 


