
Lecture 2 : Architecture and Program Development  

Data Encoding  

When encoding data, we take information in one form and translate that information into an 
entirely different form.  Often, but not always, the eventual goal is that we can translate back 
to the first form when it becomes convenient or necessary.   Why not just use the data in its 
original form?  We translate information to the second form because the second form is 
easier to deal with in some way.   

Let’s examine the phone example again.  Imagine you are in your home town and you are 
talking on the phone to someone in another state.  If you did not have a phone, and just 
stood in the middle of your yard and yelled, the person across the country is not going to 
hear you, no matter how loud you yell.  The sound generated by your voice can be carried 
through the air to the people standing near you, but that sound cannot be carried by the air 
across the country.  

Having a telephone, however, changes this.  When you speak, the telephone you are holding 
encodes the sounds of your voice into electrical signals.  While sound waves cannot easily be 
trans-ported long distances through air, electrical signals can be transported long distances, 
though high-conductivity wires.  Of course, this idea is useless unless your friend across the 
country also has a working phone, since your friend cannot understand the encoded 
electrical signals.  But, assuming there is a phone on the other end of the line to decode the 
electrical signals back into sound waves, then your friend can hear your voice in their location.  

The concept here was that sounds were not convenient for sending across long distances, so 
we encode the sounds (our voices) into a form that is more convenient to us, electrical 
signals, and then decode the information back to the first form, sound waves, once the 
transport is done.  If we think of vocal sounds as information and our goal is creating or 
hearing that information with our bodies, then sound waves are the most useful form.  
Ultimately, we want the information in “sound wave” form.  But when our goal is transporting 
the information long distances quickly, then electrical signals are the more useful form, and 
thus we want the information in “electrical signal” form for cross-country portion of the 
information journey.  The ability to convert between “sound wave” form and “electrical signal” 
form (using phone hardware) is critical for our species to communicate freely across great 
distances. 

Encoding data as bits  

Data encoding is of paramount importance in the design of today’s computers. The reason is 
that a computer is nothing more than a collection of electronic circuitry – effectively, a pile of 
electrical switches connected together by wires.  Each of the electrical switches is called a 
transistor, and each of them has only two settings or positions: “on”, and “off”.  Likewise, any of 
the wires in the computer either has electrical current flowing through it at that particular 



moment (current), or else it doesn’t have electrical current flowing through it at that particular 
moment (nocurrent).  Since most of the time, we don’t want to have to think about the 
particular circuitry layout on a computer chip, and what position switches are in and where 
current is flowing, we instead represent the on/off state, or the current/nocurrent state of a 
single transistor or the flow of electricity on a single wire, with the idea of a bit.  

We represent a bit as a single digit that is always either 1 or 0.  We implement a bit in 
hardware with a transistor set to either “on” or “off”, respectively, or with an electrical wire that 
either does (in the case of a 1), or doesn’t (in the case of a 0), have electrical current flowing 
through it.  Thinking in terms of transistors and wires is more detail than we really care about 
in many situations, so commonly, when thinking about having a collection of transistors, or a 
row of wires, we will instead view it as a collection of bits.   

We use the concept of a bit to _______________ away the details of transistor state and wire 
current state so that we can focus on bigger picture processes.  (answer: abstract) 

A bit sequence or bit string is then a collection of bits. For example, the following:  

  1111100010111001

is a bit string that is 16 bits long.  In the actual computer hardware, it would be represented 
by 16 transistors in a row set as follows:  

   on on on on on off off off on off on on on off off on

or by a row of wires, set up as follows (with CUR meaning there is current on that wire, and 
NCUR meaning there is no current on that wire): 

   CUR CUR CUR CUR CUR NCUR NCUR NCUR CUR NCUR CUR CUR CUR NCUR NCUR CUR

When dealing with computers everything gets encoded using bit strings.  The example on 
the left below shows how we might encode a set of 4 integers using 2 bits.  If we want to 
represent the number 3 in that case, we can do it using two bits, both set to 1 (or in other 
words, two transistors, both set to “on”, or two wires, both with current).  The example on the 
right below shows how we might encode 8 integers using 3 bits.  The more bits we have, the 

larger the set of integers we can encode.  Given a bit string length of N, we have 2N different 

In this abstract image representation of the bit string, what color represents “on”?  What 
color represents “off”?



bit strings of that length, and so we can encode 2N different values (N is 2 in the example on 
the left below, and 3 in the example on the right below).  

 

 

Basic computer architecture  

Computer architecture is much more complicated than we are describing here, but the 
simplified view of things we are presenting is good enough for our purposes. You’ll learn 
more details in other courses.  

The two components of the computer that we are concerned with understanding are the 
processor and memory.  The processor is where the circuitry for performing additions, 
subtractions, and so on, resides.  

We need the ability to send data into the processor, and receive data out of it.  For example, if 
we want to add 2 and 3, we need a way to send the encoded values of 2 and 3 into the 
processor, and we need a way to receive the result - the encoded value of 5.  In addition, we 
need to be able to tell the processor what operation it should be doing (e.g., this is an 
addition operation, or this is a multiplication operation).  Therefore, the following is a more 
accurate model for a processor:  



That’s basically all a processor is – a bunch of wires carrying input, a bunch of wires carrying 
output, and circuitry between the input and output wires which manipulates the input signals 
in the desired way, to produce the desired output signals. The interesting thing about 
processors is how you design that circuitry – how it is that you can wire transistors together to 
perform addition, subtraction, etc. on encoded data values. Unfortunately, how to design a 
processor is beyond the scope of this course.  (You will learn the beginning ideas in CS 231 
and CS 232 [or ECE 290 and ECE 291]).  

The processor cannot store information, though – it can only process the information it is 
given.  Where does that information come from, that we ultimately give to the processor? 
That’s where memory comes in.  

You can think of memory as a set of shelves.  
Imagine there is a room with some shelving in it, 
and each each shelf is numbered, starting with zero 
at the top. 

I could tell you to do things such as “take the item 
from shelf 3 and move it to shelf 6”, or “take the 
item from shelf 4 and throw it away”.  Anytime I 
want you to do something to one of the items on a 
shelf, I first tell you what shelf to go to by telling you 
the shelf number.  It would not do you any good for 
me to say, “take the item from the shelf and throw it 

0 top shelf

1 second shelf from the top

2 third shelf from the top

3 fourth shelf from the top

4 fifth shelf from the top

5 sixth shelf from the top

6 seventh shelf from the top



away”, since you wouldn’t know if I was talking about some item on shelf 0, or shelf 4, or some 
other shelf.  

You can think of computer memory as if it were a shelving unit, except the “items” we store on 
these “shelves” are bit strings – one per “shelf”.  The “shelves” are often called memory cells or 
memory locations, and the numerical labels on these memory locations are usually called 
memory addresses.  The addresses of our memory locations start at 0, just as the shelves in 
our above example did.  When talking about memory, we’ll use the convention of putting a 
letter ‘a’ in front of the number, just to remind ourselves that it’s an address.  (In reality, the 
address is represented as a bit string in the machine, just as the rest of our data is.)  

Or, an example loaded up with bits all decked out in Illini Orange and Blue, some on, some 
off, might look like this: 

a0 row of 8 switches

a1 row of 8 switches

a2 row of 8 switches

a3 row of 8 switches

a4 row of 8 switches

… …

a4094 row of 8 switches

a4095 row of 8 switches



In our example above, we have 4096 memory locations (think: 4096 numbered shelves), with 
addresses 0 through 4095.  Each memory location holds a row of 8 switches – i.e., it holds one 
8-bit-long bit string.  The purpose of memory – much like the purpose of a shelving unit – is to 
be a storage unit where data can be stored until it is directly needed.  At that time, it can be 
read or written by the processor.  That is, memory basically supports two operations:  

 1. Given an address, obtain the 8-bit bit string stored at that given address, and send it          
back to whatever part of the hardware requested that information. 

 2. Given an address and an 8-bit bit string, write the given 8-bit bit string into the          
memory cell at that given address – meaning that the 8-bit bit string is now stored at 
that address for as long as we need it to be.  

It may be that some data value we are trying to store takes up more than 8 bits.  For example, 

we might decide to encode 232 different integers as 32-bit bit strings.  If we did that, we 
could not fit our 32-bit bit string into one memory cell, since each memory cell only holds 8 
bits.  So, in such cases, we break our larger bit string into 8-bit pieces and store them in 
consecutive memory cells.  In the above example, your piece of information needs 32 bits to 
be represented.  Assuming the storage of this information started at the memory cell with 
address a104, then you need 4 memory cells to store the information, since 32 bits will take 
four 8-bit cells.  Since the information storage starts at a104, your information not only takes 
up the memory cell at a104, but also must include the memory cells at a105, a106, and a107 
as well.  Those four consecutive memory cells, located at addresses a104, a105, a106, and 
a107, would together hold the 32 bits that our bit string needs.  In general, that is how we 
store larger chunks of information – we break it up into many consecutive 8-bit memory cells, 
which collectively store our larger bit string.  

Question:  If we need to store a number represented by 64 bits, and the starting memory 
address location is a56, what memory addresses will be used in the storage of this 
information? 

So, the image below is the model of a computer that we will deal with in this class.  The 
assorted input signals to the processor come (mostly) from the memory itself, and the output 
signals get written back into the memory.  

a0 row of 8 switches

a1 row of 8 switches

a2 row of 8 switches

a3 row of 8 switches

a4 row of 8 switches

… …

a4094 row of 8 switches

a4095 row of 8 switches



The Stored Program Computer 

Since bit strings are all a computer understands, we need to make sure the following two 
things are true in order for computers to be able to accomplish anything:  

1.  all our data is encoded as bit strings and stored in memory 
2.  all our instructions to the processor, are encoded as bit strings and stored in memory  

That is, not only is our data stored in bit string form, but our instructions to the computer – our 
“computer programs” – are also stored in bit string form.  This is the essential idea behind a 
stored-program computer – that the same hardware that is used to store our data, could also 
be used to store our programs, because our programs are encoded into bits, as is our data.  

There are two key concepts here, one related to instructions, and one related to data.  The 
first important idea is that whatever task we want a computer to do, we need to tell it to do 
that task by supplying it with some long sequence of bits that encodes our instructions to the 
machine.  That means that writing a program is a matter of coming up with some proper 
series of instructions that the processor should run through, and then encoding those 
instructions into a form such that the program can be stored in the computer’s memory.  Our 
large sequence of bits specifying our program is broken into 8-bit pieces and stored in 
consecutive memory cells.  

The second important idea is that any given data value is also stored as a sequence of bits.  If 
our data value is only 8 bits long, it can be stored in one memory cell (since each cell can hold 
up to 8 bits).  Larger bit strings get broken up into 8-bit pieces and stored in consecutive 
memory cells, just like larger bit strings representing programs were broken up into 8-bit 
pieces and stored in consecutive memory cells.  


