
Lecture 2 : Architecture and Program Development

Data Encoding

When encoding data, we take information in one form and translate that information into an
entirely different form. Often, but not always, the eventual goal is that we can translate back
to the first form when it becomes convenient or necessary. Why not just use the data in its
original form? We translate information to the second form because the second form is
easier to deal with in some way.

Let’s examine the phone example again. Imagine you are in your home town and you are
talking on the phone to someone in another state. If you did not have a phone, and just
stood in the middle of your yard and yelled, the person across the country is not going to
hear you, no matter how loud you yell. The sound generated by your voice can be carried
through the air to the people standing near you, but that sound cannot be carried by the air
across the country.

Having a telephone, however, changes this. When you speak, the telephone you are holding
encodes the sounds of your voice into electrical signals. While sound waves cannot easily be
trans-ported long distances through air, electrical signals can be transported long distances,
though high-conductivity wires. Of course, this idea is useless unless your friend across the
country also has a working phone, since your friend cannot understand the encoded
electrical signals. But, assuming there is a phone on the other end of the line to decode the
electrical signals back into sound waves, then your friend can hear your voice in their location.

The concept here was that sounds were not convenient for sending across long distances, so
we encode the sounds (our voices) into a form that is more convenient to us, electrical
signals, and then decode the information back to the first form, sound waves, once the
transport is done. If we think of vocal sounds as information and our goal is creating or
hearing that information with our bodies, then sound waves are the most useful form.
Ultimately, we want the information in “sound wave” form. But when our goal is transporting
the information long distances quickly, then electrical signals are the more useful form, and
thus we want the information in “electrical signal” form for cross-country portion of the
information journey. The ability to convert between “sound wave” form and “electrical signal”
form (using phone hardware) is critical for our species to communicate freely across great
distances.

Encoding data as bits

Data encoding is of paramount importance in the design of today’s computers. The reason is
that a computer is nothing more than a collection of electronic circuitry – effectively, a pile of
electrical switches connected together by wires. Each of the electrical switches is called a
transistor, and each of them has only two settings or positions: “on”, and “off”. Likewise, any of
the wires in the computer either has electrical current flowing through it at that particular

moment (current), or else it doesn’t have electrical current flowing through it at that particular
moment (nocurrent). Since most of the time, we don’t want to have to think about the
particular circuitry layout on a computer chip, and what position switches are in and where
current is flowing, we instead represent the on/off state, or the current/nocurrent state of a
single transistor or the flow of electricity on a single wire, with the idea of a bit.

We represent a bit as a single digit that is always either 1 or 0. We implement a bit in
hardware with a transistor set to either “on” or “off”, respectively, or with an electrical wire that
either does (in the case of a 1), or doesn’t (in the case of a 0), have electrical current flowing
through it. Thinking in terms of transistors and wires is more detail than we really care about
in many situations, so commonly, when thinking about having a collection of transistors, or a
row of wires, we will instead view it as a collection of bits.

We use the concept of a bit to _______________ away the details of transistor state and wire
current state so that we can focus on bigger picture processes. (answer: abstract)

A bit sequence or bit string is then a collection of bits. For example, the following:

 1111100010111001

is a bit string that is 16 bits long. In the actual computer hardware, it would be represented
by 16 transistors in a row set as follows:

 on on on on on off off off on off on on on off off on

or by a row of wires, set up as follows (with CUR meaning there is current on that wire, and
NCUR meaning there is no current on that wire):

 CUR CUR CUR CUR CUR NCUR NCUR NCUR CUR NCUR CUR CUR CUR NCUR NCUR CUR

When dealing with computers everything gets encoded using bit strings. The example on
the left below shows how we might encode a set of 4 integers using 2 bits. If we want to
represent the number 3 in that case, we can do it using two bits, both set to 1 (or in other
words, two transistors, both set to “on”, or two wires, both with current). The example on the
right below shows how we might encode 8 integers using 3 bits. The more bits we have, the

larger the set of integers we can encode. Given a bit string length of N, we have 2N different

In this abstract image representation of the bit string, what color represents “on”? What
color represents “off”?

bit strings of that length, and so we can encode 2N different values (N is 2 in the example on
the left below, and 3 in the example on the right below).

Basic computer architecture

Computer architecture is much more complicated than we are describing here, but the
simplified view of things we are presenting is good enough for our purposes. You’ll learn
more details in other courses.

The two components of the computer that we are concerned with understanding are the
processor and memory. The processor is where the circuitry for performing additions,
subtractions, and so on, resides.

We need the ability to send data into the processor, and receive data out of it. For example, if
we want to add 2 and 3, we need a way to send the encoded values of 2 and 3 into the
processor, and we need a way to receive the result - the encoded value of 5. In addition, we
need to be able to tell the processor what operation it should be doing (e.g., this is an
addition operation, or this is a multiplication operation). Therefore, the following is a more
accurate model for a processor:

That’s basically all a processor is – a bunch of wires carrying input, a bunch of wires carrying
output, and circuitry between the input and output wires which manipulates the input signals
in the desired way, to produce the desired output signals. The interesting thing about
processors is how you design that circuitry – how it is that you can wire transistors together to
perform addition, subtraction, etc. on encoded data values. Unfortunately, how to design a
processor is beyond the scope of this course. (You will learn the beginning ideas in CS 231
and CS 232 [or ECE 290 and ECE 291]).

The processor cannot store information, though – it can only process the information it is
given. Where does that information come from, that we ultimately give to the processor?
That’s where memory comes in.

You can think of memory as a set of shelves.
Imagine there is a room with some shelving in it,
and each each shelf is numbered, starting with zero
at the top.

I could tell you to do things such as “take the item
from shelf 3 and move it to shelf 6”, or “take the
item from shelf 4 and throw it away”. Anytime I
want you to do something to one of the items on a
shelf, I first tell you what shelf to go to by telling you
the shelf number. It would not do you any good for
me to say, “take the item from the shelf and throw it

0 top shelf

1 second shelf from the top

2 third shelf from the top

3 fourth shelf from the top

4 fifth shelf from the top

5 sixth shelf from the top

6 seventh shelf from the top

away”, since you wouldn’t know if I was talking about some item on shelf 0, or shelf 4, or some
other shelf.

You can think of computer memory as if it were a shelving unit, except the “items” we store on
these “shelves” are bit strings – one per “shelf”. The “shelves” are often called memory cells or
memory locations, and the numerical labels on these memory locations are usually called
memory addresses. The addresses of our memory locations start at 0, just as the shelves in
our above example did. When talking about memory, we’ll use the convention of putting a
letter ‘a’ in front of the number, just to remind ourselves that it’s an address. (In reality, the
address is represented as a bit string in the machine, just as the rest of our data is.)

Or, an example loaded up with bits all decked out in Illini Orange and Blue, some on, some
off, might look like this:

a0 row of 8 switches

a1 row of 8 switches

a2 row of 8 switches

a3 row of 8 switches

a4 row of 8 switches

… …

a4094 row of 8 switches

a4095 row of 8 switches

In our example above, we have 4096 memory locations (think: 4096 numbered shelves), with
addresses 0 through 4095. Each memory location holds a row of 8 switches – i.e., it holds one
8-bit-long bit string. The purpose of memory – much like the purpose of a shelving unit – is to
be a storage unit where data can be stored until it is directly needed. At that time, it can be
read or written by the processor. That is, memory basically supports two operations:

 1. Given an address, obtain the 8-bit bit string stored at that given address, and send it
back to whatever part of the hardware requested that information.

 2. Given an address and an 8-bit bit string, write the given 8-bit bit string into the
memory cell at that given address – meaning that the 8-bit bit string is now stored at
that address for as long as we need it to be.

It may be that some data value we are trying to store takes up more than 8 bits. For example,

we might decide to encode 232 different integers as 32-bit bit strings. If we did that, we
could not fit our 32-bit bit string into one memory cell, since each memory cell only holds 8
bits. So, in such cases, we break our larger bit string into 8-bit pieces and store them in
consecutive memory cells. In the above example, your piece of information needs 32 bits to
be represented. Assuming the storage of this information started at the memory cell with
address a104, then you need 4 memory cells to store the information, since 32 bits will take
four 8-bit cells. Since the information storage starts at a104, your information not only takes
up the memory cell at a104, but also must include the memory cells at a105, a106, and a107
as well. Those four consecutive memory cells, located at addresses a104, a105, a106, and
a107, would together hold the 32 bits that our bit string needs. In general, that is how we
store larger chunks of information – we break it up into many consecutive 8-bit memory cells,
which collectively store our larger bit string.

Question: If we need to store a number represented by 64 bits, and the starting memory
address location is a56, what memory addresses will be used in the storage of this
information?

So, the image below is the model of a computer that we will deal with in this class. The
assorted input signals to the processor come (mostly) from the memory itself, and the output
signals get written back into the memory.

a0 row of 8 switches

a1 row of 8 switches

a2 row of 8 switches

a3 row of 8 switches

a4 row of 8 switches

… …

a4094 row of 8 switches

a4095 row of 8 switches

The Stored Program Computer

Since bit strings are all a computer understands, we need to make sure the following two
things are true in order for computers to be able to accomplish anything:

1. all our data is encoded as bit strings and stored in memory 
2. all our instructions to the processor, are encoded as bit strings and stored in memory

That is, not only is our data stored in bit string form, but our instructions to the computer – our
“computer programs” – are also stored in bit string form. This is the essential idea behind a
stored-program computer – that the same hardware that is used to store our data, could also
be used to store our programs, because our programs are encoded into bits, as is our data.

There are two key concepts here, one related to instructions, and one related to data. The
first important idea is that whatever task we want a computer to do, we need to tell it to do
that task by supplying it with some long sequence of bits that encodes our instructions to the
machine. That means that writing a program is a matter of coming up with some proper
series of instructions that the processor should run through, and then encoding those
instructions into a form such that the program can be stored in the computer’s memory. Our
large sequence of bits specifying our program is broken into 8-bit pieces and stored in
consecutive memory cells.

The second important idea is that any given data value is also stored as a sequence of bits. If
our data value is only 8 bits long, it can be stored in one memory cell (since each cell can hold
up to 8 bits). Larger bit strings get broken up into 8-bit pieces and stored in consecutive
memory cells, just like larger bit strings representing programs were broken up into 8-bit
pieces and stored in consecutive memory cells.

