Introduction

In Lab \#7, you created a tic-tac-toe game where users click a cell to place an x or an 0 . That was fun, but that was not really a complete tic-tac-toe game. Let's finish the game.

A few things to know about these +1 problems:

- You should start this with the base files in the base files we have provided for you on the CS 105 website. (Linked from the "Labs" page on the CS 105 website as "Lab \#7: +1 Problems".)
- The " O " is a capital letter " o ", not a 0 , and not a lowercase " o ".
- These problems are not lab problems are should be worked on independently.
- Since this is extra credit, the course staff will only provide high-level help on these problems. TAs and CAs will not tell you how to do these problems.
- Do not change the id attributes of the elements we have provided for you. (If you do, your program will not be able to be graded and you will get no points.)
- You can complete any or all of the $\mathbf{+ 1}$ problems, up to a possible total of $+\mathbf{4}$ points.

+1 Problems

$+1$
Problem \#1: For +1 , modify the program so that when a user clicks on a cell that is already occupied with an \mathbf{x} or an 0 , nothing happens. That means the cell does not change and the turn does not advance to the next player.

Problem \#2: For +1, modify the program so that when a game is won by a player:

- The winning cells have their color changed to red
- Clicking on any additional cells do nothing. (See the first +1.)

In order to change the color of the text of an element in JavaScript, you use a similar command to the command you have used to change the element's content. Similar to the .innerHTML command, you change the color of the text inside of an element by:
document.getElementById("id").style.color = "red";
$+1$
Problem \#3: For +1, program the reset button so that when a user clicks "Reset" the game resets. This includes:

- Setting all the tiles back to the initial state of an empty string.
- Resetting the current player to \mathbf{x}.
- Resetting the color of all the tiles to black (if you completed the +1 for coloring the winning tiles).

Problem \#4: For +1 , modify the program so that the Os are played by the computer. After an X is played by the user, an O should be automatically played following a few basic rules:

- If there is a cell that an o can be placed so that 0 wins the game, your program must place an O in that cell.
- If O cannot win, if there is a cell where \mathbf{x} could win on its next turn your program must place an 0 in that cell. If there are two locations where x could win, place an O in either one of those cells.
- Otherwise, place an 0 anywhere on the board.

It is possible to make o play in such a way that it's impossible for \mathbf{x} to win (eg: every game either o wins or it's a draw). While this is not required, it would be awesome if you were able to do it!

