Continuous Probability Distributions

Exponential, Erlang, Gamma
Poisson process

Discrete events happen at rate λ.

Expected number of events in time t is λt.

The actual number of events N_t is a Poisson distributed discrete random variable.

$$P(N_t = n) = \left(\frac{\lambda t}{n!}\right)^n e^{-\lambda t}$$

Why Poisson? Divide x into many tiny intervals of length Δx.

$$\rho = \frac{\lambda_{\Delta x}}{\Delta x}$$

$$L = \frac{x}{\Delta x}$$

$$E(N_x) = \rho L = \lambda x$$

$$\text{Prob}(N = n) = \left(\frac{L}{n}\right)^n (1-\rho)^{L-n}$$

$$\rho \Delta x \to 0, \quad L \sim \frac{1}{\Delta x} \to \infty$$

Poisson
Poisson (constant rate) processes

• Let’s assume that proteins are produced by all ribosomes in the cell at a rate λ per second.
• The expected number of proteins produced in x seconds is λx.
• The actual number of proteins N_x is a discrete random variable following a Poisson distribution with mean λx:

$$P_N(N_x=n)=\exp(-\lambda x)(\lambda x)^n/n! \quad E(N_x)=\lambda x$$

• Why Discrete Poisson Distribution?
 – Divide time into many tiny intervals of length $x_0 << 1/\lambda$
 – The probability of success (protein production) per internal is small: $p=\lambda \cdot \Delta x << 1$,
 – The number of intervals is large: $L= x/\Delta x >> 1$
 – Mean is constant: $E(N_x)=p \cdot L=(\lambda \Delta x) \cdot (x/\Delta x)=\lambda \cdot x$
 – $P(N_x=n)=L!/n!(L-n)! \cdot p^n (1-p)^{L-n}$
 – In the limit $p \to 0, L \to \infty$: Binomial distribution \to Poisson
CDF: $\Pr(X > x) = \Pr(N_x = 0) =$

$$= \left(\frac{(\lambda x)^0}{0!} \right) e^{-\lambda x} = e^{-\lambda x}$$

PDF: $- \frac{d}{dx} \text{CDF} : \quad f(x) = \lambda e^{-\lambda x}$
What is the distribution of the interval X between CONSEQUITIVE EVENTS of a constant rate process?

• X is a continuous random variable
• CCDF: $\text{Prob}(X>x) = \text{Prob}(N_X=0)=\exp(-\lambda x)$.
 — Remember: $P_N(N_X=n)=\exp(-\lambda x) \frac{(\lambda x)^n}{n!}$
• PDF: $f(x)=-d \text{ CCDF}(x)/dx = \lambda \exp(-\lambda x)$
• We started with a discrete Poisson distribution where time x was a parameter and N_X – discrete random variable
• We ended up with a continuous exponential distribution where time X between events was a continuous random variable
Exponential Mean & Variance

If the random variable X has an exponential distribution with parameter λ,

$$\mu = E(X) = \frac{1}{\lambda} \quad \text{and} \quad \sigma^2 = V(X) = \frac{1}{\lambda^2} \quad (4-15)$$

Note that, for the:
• Poisson distribution: mean = variance
• Exponential distribution: mean = standard deviation = variance$^{0.5}$
Exponential Distribution is a continuous generalization of what discrete probability distribution?

A. Poisson
B. Binomial
C. Geometric
D. Negative Binomial
E. I have no idea

Get your i-clickers
Biochemical Reaction Time

- The time x (in minutes) until an enzyme successfully catalyzes a biochemical reaction is approximated by this CDF:

$$F(x) = 1 - e^{-x/1.4} \text{ for } 0 \leq x$$

- What is the PDF?

$$f(x) = \frac{dF(x)}{dx} = \frac{d}{dx} [1 - e^{-x/1.4}] = e^{-x/1.4} / 1.4 \text{ for } 0 \leq x$$

- What proportion of reactions is complete within 0.5 minutes?

$$P(X < 0.5) = F(0.5) = 1 - e^{-0.5/1.4} = 1 - 0.7 = 0.3$$
The reaction product is “overdue”: no product has been generated in the past 3 minutes. What is the probability that a product will appear in the next 0.5 minutes?

A. 0.92
B. 0.3
C. 0.62
D. 0.99
E. I have no idea

Get your i-clickers
Memoryless property of the exponential distribution

\[P(X > t + s \mid X > s) = P(X > t) \]

\[P(X > t + s \mid X > s) = \frac{P(X > t + s, X > s)}{P(X > s)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t) \]

Exponential is the only memoryless distribution
Can other random variables be memoryless?

\[\frac{P(X > s + t \mid X > s)}{P(X > s)} = P(X > t) \]

\[\frac{P(X > s + t)}{P(X > s)} = P(X > t) \]

\[P(X > s + t) = P(X > s) \cdot P(X > t) \]

for any \(t \) & \(s \)

Let \(t = \Delta s \) - very small; \(F(s) = P(X \geq s) \)

\[F(s + \Delta s) = F(\Delta s) \cdot F(s) \]

\[F(0) = 1 \Rightarrow F(\Delta s) \approx 1 - \lambda \Delta s \]
\[F(s + \Delta s) = (1 - \lambda \Delta s) F(s) \]
\[\frac{F(s + \Delta s) - F(s)}{\Delta s} = -\lambda F(s) \]
\[\frac{dF(s)}{ds} = -\lambda F(s) \]
\[F(s) = e^{\lambda s} \]
\[PDF(s) = -\frac{dF}{ds} = \lambda e^{\lambda s} \]

Thus, any memoryless r.v. is exponential.
Exponential Distribution in Reliability

• The reliability of electronic components is often modeled by the exponential distribution. A chip might have mean time to failure of 40,000 operating hours.

• The memoryless property implies that the component does not wear out – the probability of failure in the next hour is constant, regardless of the component age.

• The reliability of mechanical components do have a memory – the probability of failure in the next hour increases as the component ages.
The Erlang distribution is a generalization of the exponential distribution.

The **exponential distribution** models the time interval to the 1\(^{st}\) event, while the **Erlang distribution** models the time interval to the \(r^{th}\) event, i.e., a sum of \(r\) exponentially distributed variables.

The exponential, as well as Erlang distributions, is based on the constant rate Poisson process.
Erlang Distribution

Generalizing from the constant rate Poisson \(\rightarrow \) Exponential:

\[
P(X > x) = \sum_{k=0}^{r-1} \frac{e^{-\lambda x} (\lambda x)^k}{k!} = 1 - F(x)
\]

Now differentiating \(F(x) \) we find that all terms in the sum except the last one cancel each other:

\[
f(x) = \frac{\lambda^r x^{r-1} e^{-\lambda x}}{(r-1)!} \quad \text{for } x > 0 \text{ and } r = 1, 2, 3, \ldots
\]
Example 4-23: Medical Device Failure

The failures of medical devices can be modeled as a Poisson process. Assume that units that fail are repaired immediately and the mean number of failures per hour is 0.0001. Let X denote the time until 4 failures occur. What is the probability that X exceed 40,000 hours $\sim=4.5$ years?

Let the random variable N denote the number of failures in 40,000 hours. The time until 4 failures occur exceeds 40,000 hours iff the number of failures in 40,000 hours is ≤ 3.

\[
P(X > 40,000) = P(N \leq 3)
\]

\[
E(N) = 40,000(0.0001) = 4 \text{ failures in 40,000 hours}
\]

\[
P(N \leq 3) = \sum_{k=0}^{3} \frac{e^{-4}4^k}{k!} = 0.433
\]
Erlang Distribution is a continuous generalization of what discrete probability distribution?

A. Poisson
B. Binomial
C. Geometric
D. Negative Binomial
E. I have no idea

Get your i-clickers
Erlang distribution

\[f(x) = \frac{\lambda^r x^{r-1} \exp(-\lambda x)}{(r-1)!} \]

Can be generalized for any \(r > 0 \)

Q: What to use instead of \((r-1)!\)?
Gamma Function

The gamma function is the generalization of the factorial function for \(r > 0 \), not just non-negative integers.

\[
\Gamma (r) = \int_{0}^{\infty} x^{r-1} e^{-x} \, dx, \quad \text{for } r > 0
\]

(4-17)

Properties of the gamma function

\[
\Gamma (r) = (r-1)\Gamma (r-1) \quad \text{recursive property}
\]

\[
\Gamma (r) = (r-1)! \quad \text{factorial function}
\]

\[
\Gamma (1) = 0! = 1
\]

\[
\Gamma (1/2) = \pi^{1/2} = 1.77
\]

\[
\Gamma \left(\frac{3}{2} \right) = \frac{1}{2} \Gamma \left(\frac{1}{2} \right) = 0.889
\]

interesting facts

\[
\left(\frac{1}{2} \right)! = \frac{\sqrt{\pi}}{2}
\]
Gamma Distribution

The random variable X with a probability density function:

$$f(x) = \frac{\lambda^r x^{r-1} e^{-\lambda x}}{\Gamma(r)}, \text{ for } x > 0$$ \hspace{1cm} (4-18)

has a gamma random distribution with parameters $\lambda > 0$ and $r > 0$. If r is an positive integer, then X has an Erlang distribution.
Gamma Distribution Graphs

- The r and λ parameters are often called the “shape” and “scale”
- Different parameter combinations change the distribution.
- The distribution becomes progressively more symmetric as r increases.
- Matlab uses $1/\lambda$ as a “scale” parameter.

Figure 4-25 Gamma probability density functions for selected values of λ and r.
Mean & Variance of the Erlang and Gamma

• If X is an Erlang (or more generally Gamma) random variable with parameters λ and r,
 $$\mu = E(X) = \frac{r}{\lambda} \text{ and } \sigma^2 = V(X) = \frac{r}{\lambda^2} \quad (4-19)$$

• Generalization of exponential results:
 $$\mu = E(X) = \frac{1}{\lambda} \text{ and } \sigma^2 = V(X) = \frac{1}{\lambda^2} \quad \text{or}$$
 Negative binomial results:
 $$\mu = E(X) = \frac{r}{p} \text{ and } \sigma^2 = V(X) = \frac{r(1-p)}{p^2}$$
Matlab exercise:

- Generate a sample of 100,000 random numbers drawn from an exponential distribution with rate $\lambda=0.1$.

 Hint: read the help page for `random(‘Exponential’...)`

- Calculate mean and standard deviation of the sample and compare to predictions $1/\lambda$

- Generate PDF and CCDF of the sample and plot them both on a semilogarithmic scale (y-axis)

- After done with exponential modify for Gamma distribution with $\lambda=0.1, r=4.5$
• Stats=??; lambda=??;
• r2=random('Exponential', ??, Stats,1);
• disp([mean(r2), ??]);
• disp([std(r2), ??]);
• %%
• step=0.1; [a,b]=hist(r2,0:step:max(r2));
• pdf_e=a./sum(a).?? step;
• figure; subplot(1,2,1); semilogy(b,pdf_e,'ko-');
• %%
• X=0:0.01:100;
• for m=1:length(X);
• ccdf_e(m)=sum(r2 ?? X(m))./Stats;
• end;
• subplot(1,2,2); semilogy(X,ccdf_e,'ko-');