Joint Probability Distributions, Correlations
What we learned so far...

• Events:
 – Working with events as sets: union, intersection, etc.
 • Some events are simple: Head vs Tails, Cancer vs Healthy
 • Some are more complex: 10<Gene expression<100
 • Some are even more complex: Series of dice rolls: 1,3,5,3,2
 – Conditional probability: \(P(A|B) =\frac{P(A \cap B)}{P(B)} \)
 – Independent events: \(P(A|B) = P(A) \) or \(P(A \cap B) = P(A) \times P(B) \)
 – Bayes theorem: relates \(P(A|B) \) to \(P(B|A) \)

• Random variables:
 – Mean, Variance, Standard deviation. How to work with \(E(g(X)) \)
 – Discrete (Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative binomial, Hypergeometric, Power law);
 PMF: \(f(x) = \text{Prob}(X=x) \); CDF: \(F(x) = \text{Prob}(X \leq x) \);
 – Continuous (Uniform, Exponential, Erlang, Gamma, Normal, Log-normal);
 PDF: \(f(x) \) such that \(\text{Prob}(X \text{ inside } A) = \int_A f(x)dx \); CDF: \(F(x) = \text{Prob}(X \leq x) \)

• Next step: work with multiple random variables
Concept of Joint Probabilities

• Biological systems are usually described not by a single random variable but by many random variables

• Example: The expression state of a human cell: 20,000 random variables X_i for each of its genes

• A joint probability distribution describes the behavior of several random variables

• We will start with just two random variables X and Y and generalize when necessary
Joint Probability Mass Function Defined

The joint probability mass function of the discrete random variables \(X \) and \(Y \), denoted as \(f_{XY}(x, y) \), satisfies:

1. \(f_{XY}(x, y) \geq 0 \) \hspace{1cm} All probabilities are non-negative
2. \(\sum_{x} \sum_{y} f_{XY}(x, y) = 1 \) \hspace{1cm} The sum of all probabilities is 1
3. \(f_{XY}(x, y) = P(X = x, Y = y) \) \hspace{1cm} (5-1)
Example 5-1: # Repeats vs. Signal Bars

You use your cell phone to check your airline reservation. It asks you to speak the name of your departure city to the voice recognition system.

• Let \(Y \) denote the number of times you have to state your departure city.
• Let \(X \) denote the number of bars of signal strength on your cell phone.

\(y \): number of times city name is stated	\(x \): number of bars of signal strength		
\(1 \)	0.01	0.02	0.25
\(2 \)	0.02	0.03	0.20
\(3 \)	0.02	0.10	0.05
\(4 \)	0.15	0.10	0.05

Figure 5-1 Joint probability distribution of \(X \) and \(Y \). The table cells are the probabilities. Observe that more bars relate to less repeating.
Marginal Probability Distributions (discrete)

For a discrete joint PDF, there are marginal distributions for each random variable, formed by summing the joint PMF over the other variable.

\[
f_X(x) = \sum_y f_{XY}(x, y)
\]

\[
f_Y(y) = \sum_x f_{XY}(x, y)
\]

Called marginal because they are written in the margins

Figure 5-6 From the prior example, the joint PMF is shown in green while the two marginal PMFs are shown in purple.
Mean & Variance of X and Y are calculated using marginal distributions

<table>
<thead>
<tr>
<th>y = number of times city name is stated</th>
<th>x = number of bars of signal strength</th>
<th>f(y) =</th>
<th>y*f(y) =</th>
<th>y²*f(y) =</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.25</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>0.03</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.10</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>0.15</td>
<td>0.10</td>
<td>0.05</td>
<td>0.30</td>
</tr>
</tbody>
</table>

\[
f(x) = \begin{bmatrix} 0.20 & 0.25 & 0.55 & 1.00 & 2.49 & 7.61 \end{bmatrix}
\]

\[
x*f(x) = \begin{bmatrix} 0.20 & 0.50 & 1.65 & 2.35 & 4.95 & 6.15 \end{bmatrix}
\]

\[
x²*f(x) = \begin{bmatrix} 0.20 & 1.00 & 4.95 & 6.15 & 4.95 & 6.15 \end{bmatrix}
\]

\[
\mu_X = E(X) = 2.35; \quad \sigma_X^2 = V(X) = 6.15 - 2.35^2 = 6.15 - 5.52 = 0.6275
\]

\[
\mu_Y = E(Y) = 2.49; \quad \sigma_Y^2 = V(Y) = 7.61 - 2.49^2 = 7.61 - 16.20 = 1.4099
\]
Conditional Probability Distributions

Recall that \(P(B|A) = \frac{P(A \cap B)}{P(A)} \)

\[
P(Y=y|X=x) = \frac{P(X=x,Y=y)}{P(X=x)} = \frac{f(x,y)}{f_X(x)}
\]

From Example 5-1

\[
P(Y=1|X=3) = \frac{0.25}{0.55} = 0.455
\]

\[
P(Y=2|X=3) = \frac{0.20}{0.55} = 0.364
\]

\[
P(Y=3|X=3) = \frac{0.05}{0.55} = 0.091
\]

\[
P(Y=4|X=3) = \frac{0.05}{0.55} = 0.091
\]

Sum = 1.00

Note that there are 12 probabilities conditional on \(X \), and 12 more probabilities conditional upon \(Y \).
Joint Random Variable Independence

• Random variable independence means that knowledge of the values of X does not change any of the probabilities associated with the values of Y.

• Opposite: Dependence implies that the values of X are influenced by the values of Y.
Independence for Discrete Random Variables

• Remember independence of events (slide 21 lecture 3):
 \[P(A \mid B) = \frac{P(A \cap B)}{P(B)} = P(A) \] or
 \[P(B \mid A) = \frac{P(A \cap B)}{P(A)} = P(B) \] or
 \[P(A \cap B) = P(A) \cdot P(B) \]

• Random variables independent if any events \(A \) that \(Y=y \) and \(B \) that \(X=x \) are independent
 \[P(Y=y \mid X=x) = P(Y=y) \] for any \(x \) or
 \[P(X=x \mid Y=y) = P(X=x) \] for any \(y \) or
 \[P(X=x, Y=y) = P(X=x) \cdot P(Y=y) \] for any \(x \) and \(y \)
X and Y are Bernoulli variables

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>2/6</td>
<td>1/6</td>
</tr>
<tr>
<td>X=1</td>
<td>2/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

What is the marginal $P_Y(Y=0)$?

A. 1/6
B. 2/6
C. 3/6
D. 4/6
E. I don’t know

Get your i-clickers
X and Y are Bernoulli variables

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>2/6</td>
<td>1/6</td>
</tr>
<tr>
<td>X=1</td>
<td>2/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

What is the conditional $P(X=0|Y=0)$?

A. 2/6
B. 1/2
C. 1/6
D. 4/6
E. I don’t know

Get your i-clickers
X and Y are Bernoulli variables

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>2/6</td>
<td>1/6</td>
</tr>
<tr>
<td>X=1</td>
<td>2/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Are they independent?

A. yes
B. no
C. I don’t know

Get your i-clickers
X and Y are Bernoulli variables

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>X=1</td>
<td>0</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Are they independent?

A. yes
B. no
C. I don’t know

Get your i-clickers
Joint Probability Density Function Defined

The joint probability density function for the continuous random variables X and Y, denotes as $f_{XY}(x,y)$, satisfies the following properties:

1. $f_{XY}(x,y) \geq 0$ for all x, y

2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) \, dx \, dy = 1$

3. $P((X,Y) \subset R) = \iiint_{R} f_{XY}(x,y) \, dx \, dy \quad (5-2)$

Figure 5-2 Joint probability density function for the random variables X and Y. Probability that (X, Y) is in the region R is determined by the volume of $f_{XY}(x,y)$ over the region R.

Sec 5-1.1 Joint Probability Distributions
Figure 5-3 Joint probability density function for the continuous random variables X and Y of expression levels of two different genes. Note the asymmetric, narrow ridge shape of the PDF – indicating that small values in the X dimension are more likely to occur when small values in the Y dimension occur.
Marginal Probability Distributions (continuous)

• Rather than summing a discrete joint PMF, we integrate a continuous joint PDF.
• The marginal PDFs are used to make probability statements about one variable.
• If the joint probability density function of random variables X and Y is $f_{XY}(x,y)$, the marginal probability density functions of X and Y are:

\[
f_X(x) = \int y f_{XY}(x,y) \, dy
\]

\[
f_Y(y) = \int x f_{XY}(x,y) \, dx
\]

\[
f_X(x) = \sum_y f_{XY}(x,y)
\]

\[
f_Y(y) = \sum_x f_{XY}(x,y)
\]

(5-3)
Conditional Probability Density Function Defined

Given continuous random variables X and Y with joint probability density function $f_{XY}(x, y)$, the conditional probability density function of Y given $X=x$ is

$$f_{Y|X}(y) = \frac{f_{XY}(x, y)}{f_X(x)} = \frac{f_{XY}(x, y)}{\int_{y} f_{XY}(x, y) \, dy} \quad \text{if} \quad f_X(x) > 0 \quad (5-4)$$

Compare to discrete: $P(Y=y|X=x) = f_{XY}(x,y)/f_X(x)$

which satisfies the following properties:

1. $f_{Y|X}(y) \geq 0$
2. $\int f_{Y|X}(y) \, dy = 1$
3. $P(Y \subset B|X=x) = \int f_{Y|X}(y) \, dy$ for any set B in the range of Y
Conditional Probability Distributions

• Conditional probability distributions can be developed for multiple random variables by extension of the ideas used for two random variables.

• Suppose $\rho = 5$ and we wish to find the distribution of X_1, X_2 and X_3 conditional on $X_4=x_4$ and $X_5=x_5$.

$$f_{X_1X_2X_3|X_4X_5}(x_1, x_2, x_3) = \frac{f_{X_1X_2X_3X_4X_5}(x_1, x_2, x_3, x_4, x_5)}{f_{X_4X_5}(x_4, x_5)}$$

for $f_{X_4X_5}(x_4, x_5) > 0$.

Sec 5-1.5 More Than Two Random Variables
Independence for Continuous Random Variables

For random variables \(X \) and \(Y \), if any one of the following properties is true, the others are also true. Then \(X \) and \(Y \) are independent. Then \(X \) and \(Y \) are independent.

\[P(Y=y \mid X=x) = P(Y=y) \text{ for any } x \text{ or } P(X=x \mid Y=y) = P(X=x) \text{ for any } y \text{ or } P(X=x, Y=y) = P(X=x) \cdot P(Y=y) \text{ for any } x \text{ and } y \]

(1) \(f_{XY}(x, y) = f_X(x) \cdot f_Y(y) \)

(2) \(f_{Y|x}(y) = f_Y(y) \) for all \(x \) and \(y \) with \(f_X(x) > 0 \)

(3) \(f_{X|y}(y) = f_X(x) \) for all \(x \) and \(y \) with \(f_Y(y) > 0 \)

(4) \(P(X \subset A, Y \subset B) = P(X \subset A) \cdot P(Y \subset B) \) for any sets \(A \) and \(B \) in the range of \(X \) and \(Y \), respectively.

(5-7)
Example 1: Uniform distribution in the square
-1 < x < 1, -1 < y < 1

\[
\begin{cases}
 f_{XY}(x, y) = c \quad \text{if} -1 < x < 1 \text{ and } -1 < y < 1 \\
 0 \quad \text{otherwise}
\end{cases}
\]

\[1 = \int \int_{\text{square}} f_{XY}(x, y) \, dx \, dy = c \cdot \text{Area} = c \cdot 4 \Rightarrow c = \frac{1}{4}\]
Are X and Y independent? Yes they are.

Let's test if $f_{XY}(x, y) = f_X(x) \cdot f_Y(y)$

$$
\begin{align*}
\int_{-\infty}^{\infty} f_X(x) &= \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy = \\
&= \int_{-1}^{1} \frac{1}{4} \, dy = \frac{1}{2} \quad \text{if} \quad -1 < x < 1
\end{align*}
$$

Same for $f_Y(y) = \frac{1}{2}$ if $-1 < y < 1$

$$
\frac{1}{4} = f_{XY}(x, y) = \frac{1}{2} \cdot \frac{1}{2} = f_X(x) \cdot f_Y(y)
$$

0 otherwise if both x & y are in $[-1, 1]$
X and Y are uniformly distributed in the disc $x^2 + y^2 \leq 1$

Are they independent?

A. yes
B. no
C. I could not figure it out

Get your i-clickers
Joint PDF \(f(x, y) = \frac{1}{\text{area}} = \frac{1}{\pi} \) if \(x, y \) in the disc

Marginal distributions:

\[
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{dy}{\pi} = \frac{2 \sqrt{1-x^2}}{\pi}
\]

Same for \(f_Y(y) = \frac{2 \sqrt{1-y^2}}{\pi} \)

\[
\frac{1}{\pi} = f_{X,Y}(x, y) \neq \frac{2}{\pi} \sqrt{1-x^2} \cdot \frac{2}{\pi} \sqrt{1-y^2} = f_X(x) \cdot f_Y(y)
\]

Variables are **not** independent
Covariation, Correlations
Covariance - A number to measure dependence between random variables.

\[\text{Cov}(X, Y) \text{ or } \sigma_{xy} \]

\[\sigma_{xy} = E \left[(X - \mu_x) \cdot (Y - \mu_y) \right] = \]

\[= E(X, Y) - \mu_x \cdot \mu_y \]

- \[\text{Var}(X) = \text{Cov}(X, X) \]
- If \(X \) and \(Y \) are independent, then \(\text{Cov}(X, Y) = E[X - \mu_x] \cdot E[Y - \mu_y] = 0 \)
- \(-\infty < \text{Cov}(X, Y) < +\infty \) can be negative.
Covariance Defined

Covariance is a number quantifying average dependence between two random variables.

The covariance between the random variables X and Y, denoted as $\text{cov}(X,Y)$ or σ_{XY} is

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$$ \hspace{1cm} (5-14)

The units of σ_{XY} are units of X times units of Y.

Unlike the range of variance, $-\infty < \sigma_{XY} < \infty$.
The probability distribution of Example 5-1 is shown.

By inspection, note that the larger probabilities occur as X and Y move in opposite directions. This indicates a negative covariance.
Figure 5-13 Joint probability distributions and the sign of cov(X, Y). Note that covariance is a measure of linear relationship. Variables with non-zero covariance are correlated.
Independence Implies $\sigma=\rho = 0$ but **not vice versa**

- If X and Y are independent random variables,
 $$\sigma_{XY} = \rho_{XY} = 0 \quad (5-17)$$

- $\rho_{XY} = 0$ is necessary, but **not a sufficient condition** for independence.
Correlation is “normalized covariance”

• Also called: Pearson correlation coefficient

\[\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \]

is the covariance normalized to be \(-1 \leq \rho_{XY} \leq 1\)

Karl Pearson (1852–1936)
English mathematician and biostatistician