Lecture #8:
ECM
Natural Scaffold Materials
Extracellular Matrix (ECM)

- ECM is a complex structural network surrounding and supporting cells
- Most natural polymers used as biomaterials are constituents of the ECM
- ECM vs connective tissue
 - ECM – structure network, *not including cells*
 - Connective tissue
 - Supportive tissues with large amounts of ECM
 - Includes bone, cartilage, loose connective tissue
 - Excludes nerve, muscle, blood, epithelial tissues
ECM Composition

- The ECM is composed of 3 major classes of biomolecules
 1. Structural proteins: collagen and elastin
 2. Specialized proteins: e.g. fibrillin, fibronectin, and laminin
 3. Proteoglycans: protein core with attached polysaccharides, glycosaminoglycans (GAGs), forming a complex macromolecule
ECM Forms

1. Interstitial matrix (in connective tissue):
 - Matrix can be calcified as in bone
 - Can be transparent as in the cornea
 - Ropelike organization as in tendons
2. Basal laminae

- Flexible, thin (40-120 nm thick) mats of specialized ECM that
 - Underlie all epithelial and endothelial sheets and tubes.
 - Surround individual muscle cells, fat cells and Schwann cells
- Separate them from connective tissue or another layer of cells
- Basement membrane
 - Basal laminae plus a layer of anchoring collagen microfibrils that anchor the basal laminae to connective tissue
Basal Lamina in the Cornea of chick Embryo

Epithelial Cells

Basal Lamina

Collagen Fibers
Molecular Structure of a Basal Lamina

(A) Basal Lamina is formed by specific interactions

(B) Molecules that directly bind each other
Native ECM Functions

- Scaffold to support and organize cells
- Regulate cell function
- Provide mechanical support to the tissue

Schematic overview of the types of molecules that bind cells to each other and to the extracellular matrix.
Extracellular Matrix

- ECM can influence
 - Cell shape
 - Cells align with the direction of fibers
 - Cell spreading
 - Cell survival
 - Anchorage dependent cells
 - Mediated by integrins and intracellular signals
Extracellular Matrix Functions

• ECM can influence
 – Cell proliferation
 • Anchorage dependent cells
 • Physical spreading of a cell on the matrix also has a strong influence on intracellular events
 • Cells that are forced to spread over a large surface area survive better and proliferate faster than cells that are not so spread out
 – Even if the cells have the same area making direct contact with the matrix (equal number of matrix molecules in contact with the cells)
Collagen

- 90% of ECM from most tissues
- Tensile strength
- More than 20 types
 - Bovine Type I collagen from Achilles tendon
 - most common therapeutic source
 - Type IV in vascular basement membrane
Fibronectin
- RGD (Arg-Gly-Asp) peptide is bound by $\alpha_5\beta_1$ integrin
- Adhesive properties useful in cell culture and biocompatibility coatings

Laminin
- Complex adhesion protein
- Important in development and in cell/tissue differentiation
Glycosaminoglycans (GAGs)

- Bind growth factors and cytokines
- Retain water to provide compressive strength (gel)
- Chondroitin sulfates A and B, heparin, heparan sulfate, and hyaluronic acid.
Engineered Scaffold Functions

- Scaffold to support and organize cells
- Regulate cell function
- Provide mechanical support to the tissue
- Determine gross morphology of the engineered tissue
- Create space for potential tissue formation
- Provide specific cell adhesion receptors
- Act as a reservoir for immobilized growth factors
- Impart tensile and compressive strength
Degradation

- Natural ECM scaffolds degrade quickly after implantation (unless chemically crosslinked)
- Strength of scaffold can decrease in early weeks following implant
- Remodeling can result in final replacement tissue as strong or stronger than native
- Degraded ECM releases bound growth factors and peptides
Example: ECM + Cells

- Esophagus repair in dogs (5 cm length)
 1. ECM scaffold only (porcine urinary bladder)
 2. Autologous muscle tissue only
 3. ECM + 30% muscle
 4. ECM + 100% muscle

Healthy remodeled ECM scaffold (group 3)
Naturally Derived Scaffold Materials

- Collagen and Gelatin (single-stranded collagen)
- Hyaluronan (hyaluronic acid)
- Fibrin
- Alginate
- Agarose
- Chitosan
- Acellular tissue-derived matrices (Small intestinal submucosa)
Collagen

- The prototypical scaffold material
- Facilitates cell adhesion
- Can be proteolytically remodeled by cells
- Can be solubilized into a liquid form conducive to injection in a minimally-invasive fashion
- Minimal inflammatory and antigenic responses
Type-I Collagen Gels

[Images and diagrams related to Type-I Collagen Gels]
A Type I Collagen Sponge Used as an ECM Analog

Porous Sponge without Cells

Porous Sponge with Smooth Muscle Cells (1 Day Post-Seeding)

Limitations to Collagen

- Collagen gels are thermally reversible and possess limited range of mechanical properties.
 - Collagen cross-linked with glutaraldehyde has improved mechanical properties but can have cytotoxic effects
- Source issues (xenogeneic, allogeneic, autologous?)
 - If from a non-autologous source, cells embedded within it have to be removed to reduce the chance of an adverse immune response
Gelatin

- Single-stranded collagen, produced by partial hydrolysis of collagen
- (Boil down bones and cartilage)
- Forms gel at lower temperatures, liquid at higher temperatures
- Can be crosslinked to stabilize
Fibrin(-ogen)

Fibrinogen (Factor I)

Factor XIII

Fibrinogen (Factor I)

Thrombin (Factor IIa)

Fibrin (Factor Ia)

Factor XIIIa

Fibrinolysis

Plasmin

MMPs

Aprotinin

TIMPs

X-linked Fibrin

Factor XIIIa: transglutaminase
Covalent bond between free amine (e.g. lysine) and acyl group (e.g. glutamine)

www.well.ox.ac.uk/~fionag/fibrinogen.shtml
Fibrin and the Coagulation Cascade

Fibrinogen → Thrombin → FpA + FpB → Soluble Fibrin Polymer

Factor XIIIa
Increasing Fibrin Concentration Influences the Mechanical Properties and Porosity

Alginate: A Naturally Derived GAG Analog

• A linear polysaccharide material isolated from brown seaweed
 – Cheap and plentiful
 – Can be cross-linked with calcium to form a hydrogel
 – Offers compression resistance like native GAGs
 – Cells do not have receptors for “alginate”
 – Can be modified with RGD
Alginate: A Naturally Derived GAG Analog

\[
\begin{align*}
(G) \text{ guluronic} & & (M) \text{ mannuronic} \\
\end{align*}
\]

\[\text{Ca}^{2+}\]
Calcium-Dependent Alginate Gel Formation

- Mix cells with alginate and drip into Ca$^{2+}$ ion solution
- Can recover gels with Calcium chelator (EDTA)
- Also can inject and form gel in situ

Chondrocytes encapsulated in alginate beads

http://articular.com/default_files/Page1604.htm
RGD Modification of Alginate

![Images of alginate modifications with and without RGD](image.png)

![Graph showing mass comparison](image.png)

Alsberg, Mooney+, PNAS 2002
Hyaluronan (HA)

- Sometimes called hyaluronic acid
- Not to be confused with hydroxyapatite (the other HA)
- Is a linear polysaccharide composed of a repeating disaccharide
- Can be formed into hydrogels by covalent cross-linking with hydrazide derivatives
- Can be combined with other natural biopolymers to form novel composite hydrogels
Chitosan: Another naturally derived GAG analog

- From shells of crustaceans and cell walls of fungi
- Bioadhesive, wound dressing, drug delivery, and TE scaffold
- Bone and Cartilage; also skin, neural, others
- Can be cross-linked to form gel (glutaraldehyde)
Scaffolds from Decellularized Organs: Heart

Ott et al, Nat Medicine, 2008
Scaffolds from Decellularized Organs:
Heart

Seeded with neonatal cardiac cells and cultured in perfusion bioreactor for up to one month.

Ott et al, Nat Medicine, 2008
Scaffolds from Decellularized Organs: Lung

Petersen et al, Science, 2010
Scaffolds from Decellularized Organs: Lung

http://www.jove.com/video/2651/procedure-for-lung-engineering
Injectable ECM from Decellularized Organs

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159653/
Limitations of Naturally-Derived Materials

- Isolation and processing of native materials contribute to:
 - Variable product
 - Large expense
 - Limited range of properties
 - Possibility of inflammatory response (foreign proteins even though cells have been removed)
Chapter 5
The extracellular matrix as a biologic scaffold for tissue engineering

Stephen Badylak, Thomas Gilbert and Julie Myers-Irvin

Chapter contents
5.1 Introduction 122
5.2 Extracellular matrix 123
5.3 Preparation of ECM 131
5.4 Biologic activities of ECM scaffolds 133
5.5 Commercially available scaffolds composed of extracellular matrix 137
5.6 Future considerations 137
5.7 Summary 140