Discrete Probability Distributions

Random Variables

- A variable that associates a number with the outcome of a random experiment is called a random variable.
- Notation: random variable is denoted by an uppercase letter, such as X. After the experiment is conducted, the measured value is denoted by a lowercase letter, such a x.

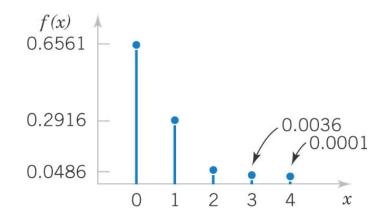
 Both X and x are shown in italics, e.g., P(X=x).

Continuous & Discrete Random Variables

- A discrete random variable is usually integer number
 - N the number of p53 proteins in a cell
 - D the number of nucleotides different between two sequences
- A continuous random variable is a real number
 - C=N/V the concentration of p53 protein in a cell of volume V
 - Percentage (D/L)*100% of different nucleotides in protein sequences of different lengths L (depending on the set of L's may be discrete but dense)

Probability Mass Function (PMF)

- I want to compare all <u>4-</u> <u>mers</u> in a pair of human genomes
- X random variable: the number of nucleotide differences in a given 4mer
- Probability Mass Function:
 f(x) or P(X=x) the
 probability that the # of
 SNPs is exactly equal to x



Probability Mass Function for the # of mismatches in 4-mers

P(X = 0) =	0.6561
P(X = 1) =	0.2916
P(X = 2) =	0.0486
P(X = 3) =	0.0036
P(X = 4) =	0.0001
$\sum_{x} P(X=x)=$	1.0000

Cumulative Distribution Function (CDF)

P(X≤x)	P(X>x)	
0.6561	0.3439	
0.9477	0.0523	
0.9963	0.0037	
0.9999	0.0001	
1.0000	0.0000	

Cumulative Distribution Function CDF: F(x)=P(X≤x)

Example:

$$F(3)=P(X \le 3) = P(X=0) + P(X=1) + P(X=2) + P(X=3) = 0.9999$$

Complementary Cumulative Distribution Function

(tail distribution) or <u>CCDF</u>: $F_{>}(x)=P(X>x)$

Example: $F_{>}(3) = P(X > 3) = 1 - P(X \le 3) = 0.0001$

Mean or Expected Value of X

The mean or expected value of the discrete random variable X, denoted as μ or E(X), is

$$\mu = E(X) = \sum_{x} x \cdot P(X = x) = \sum_{x} x \cdot f(x)$$

- The mean = the weighted average of all possible values of X. It represents its "center of mass"
- The mean may, or may not, be an allowed value of X
- It is also called the arithmetic mean (to distinguish from e.g. the geometric mean discussed later)
- Mean may be infinite if X any integer and $P(X=x)>1/x^2$

Variance V(X): Square Of a typical deviation from mean M= E(X) V(X) = 27 where 3 is called Standard deviation $b^2 = V(X) = E((X-\mu)^2) =$ $= E(X^{1} - 2\mu X + \mu^{1}) = E(X^{1}) -2\mu E(X) + \mu^2 = E(X^1) - 2\mu^2 + \mu^2 = E(X^1) - E(X^1) - E(X^1)$

Variance of a Random Variable

If X is a discrete random variable with probability mass function f(x),

$$E[h(X)] = \sum_{x} h(x) \cdot P(X = x) = \sum_{x} h(x) f(x)$$
(3-4)

If $h(x) = (X - \mu)^2$, then its expectation, V(x), is the variance of X. $\sigma = \sqrt{V(x)}$, is called standard deviation of X

$$\sigma^{2} = V(X) = \sum_{x} (x - \mu)^{2} f(x) \text{ is the definitional formula}$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) f(x)$$

$$= \sum_{x} x^{2} f(x) - 2\mu \sum_{x} x f(x) + \mu^{2} \sum_{x} f(x)$$

$$= \sum_{x} x^{2} f(x) - 2\mu^{2} + \mu^{2}$$

$$= \sum_{x} x^{2} f(x) - \mu^{2} \text{ is the computational formula}$$

$$= \sum_{x} x^{2} f(x) - \mu^{2} \text{ is the computational formula}$$

Variance can be infinite if X can be any integer and $P(X=x) \ge 1/x^3$

Skewness of a random variable

- Want to quantify how asymmetric is the distribution around the mean?
- Need any odd moment: $E[(X-\mu)^{2n+1}]$
- Cannot do it with the first moment: $E[X-\mu]=0$
- Normalized 3-rd moment is skewness: $\gamma 1=E[(X-\mu)^3/\sigma^3]$
- Skewness can be infinite if X takes unbounded integer values and P(X=x) ≥1/x⁴

Geometric mean of a random variable

- Useful for very broad distributions (many orders of magnitude)?
- Mean may be dominated by very unlikely but very large events. Think of a lottery
- Exponent of the mean of log X: Geometric mean=exp(E[log X])
- Geometric mean usually is not infinite

Summary: Parameters of a Probability Distribution

- The mean, $\mu = E[X]$, is a measure of the center of mass of a random variable
- The variance, $V(X)=E[(X-\mu)^2]$, is a measure of the dispersion of a random variable around its mean
- The standard deviation, $\sigma = sqrt[V(X)]$, is another measure of the dispersion around mean
- The skewness, $\gamma 1 = E[(X \mu)^3 / \sigma^3]$, measure of asymmetry around mean
- The geometric mean, exp(E[log X]), is useful for very broad distributions
- All can be infinite! Practically it means they increase with sample size
- Different distributions can have identical parameters

Summary: Parameters of a Probability Distribution

- Probability Mass Function (PMF): f(x)=Prob(X=x)
- Cumulative Distribution Function (CDF): F(x)=Prob(X≤x)
- Complementary Cumulative Distribution Function (CCDF):
 F_>(x)=Prob(X>x)
- The mean, $\mu = E[X]$, is a measure of the center of mass of a random variable
- The variance, $V(X)=E[(X-\mu)^2]$, is a measure of the dispersion of a random variable around its mean
- The standard deviation, $\sigma = [V(X)]^{1/2}$, is another measure of the dispersion around mean. Has the same units as X
- The skewness, $\gamma 1 = E[(X \mu)^3 / \sigma^3]$, a measure of asymmetry around mean
- The geometric mean, exp(E[log X]) is useful for very broad distributions

A gallery of useful discrete probability distributions

Discrete Uniform Distribution

- Simplest discrete distribution.
- The random variable X assumes only a finite number of values, each with equal probability.
- A random variable X has a discrete uniform distribution if each of the n values in its range, say $x_1, x_2, ..., x_n$, has equal probability.

$$f(x_i) = 1/n$$

Uniform Distribution of Consecutive Integers

• Let X be a discrete uniform random variable all integers from a to b (inclusive). There are b-a+1 integers. Therefore each one gets: f(x) = 1/(b-a+1)

Its measures are:

$$\mu = E(x) = (b+a)/2$$

$$\sigma^2 = V(x) = [(b-a+1)^2-1]/12$$

Note that the mean is the midpoint of a & b.

x = 1:10

What is the behavior of its Probability Mass Function (PMF): P(X=x)?

- A. does not change with x=1:10
- B. linearly increases with x=1:10
- C. linearly decreases with x=1:10
- D. is a quadratic function of x=1:10

x = 1:10

What is the behavior of its Cumulative Distribution Function (CDF): P(X≤x)?

- A. does not change with x=1:10
- B. linearly increases with x=1:10
- C. linearly decreases with x=1:10
- D. is a quadratic function of x=1:10

x = 1:10

What is its mean value?

A. 0.5

B. 5.5

C. 5

D. 0.1

$$x = 1:10$$

What is its skewness?

A. 0.5

B. 1

C. 0

D. 0.1

Matlab exercise: Uniform distribution

- Generate a sample of size 100,000 for uniform random variable X taking values 1,2,3,...10
- Plot the <u>approximation</u> to the probability mass function based on <u>this sample</u>
- Calculate mean and variance of <u>this sample</u> and compare it to infinite sample predictions: E[X]=(a+b)/2 and V[X]=((a-b+1)²-1)/12

Matlab template: Uniform distribution

- b=10; a=1; % b= upper bound; a= lower bound (inclusive)'
- Stats=100000; % sample size to generate
- r1=rand(Stats,1);
- r2=floor(??*r1)+??;
- mean(r2)
- var(r2)
- std(r2)
- [hy,hx]=hist(r2, 1:10); % hist generates histogram in bins 1,2,3...,10
- % hy number of counts in each bin; hx coordinates of bins
- p_f=hy./??; % normalize counts to add up to 1
- figure; plot(??,p_f, 'ko-'); ylim([0, max(p_f)+0.01]); % plot the PMF

Matlab exercise: Uniform distribution

- b=10; a=1; % b= upper bound; a= lower bound (inclusive)'
- Stats=100000; % sample size to generate
- r1=rand(Stats,1);
- r2=floor(b*r1)+a;
- mean(r2)
- var(r2)
- std(r2)
- [hy,hx]=hist(r2, 1:10); % hist generates histogram in bins 1,2,3...,10
- % hy number of counts in each bin; hx coordinates of bins
- p_f=hy./sum(hy); % normalize counts to add up to 1
- figure; plot(hx,p_f, 'ko-'); ylim([0, max(p_f)+0.01]); % plot the PMF