Joint Probability Distributions, Correlations
What we learned so far...

- **Random Events:**
 - Working with *events as sets*: union, intersection, etc.
 - Some events are simple: Head vs Tails, Cancer vs Healthy
 - Some are more complex: $10 < \text{Gene expression} < 100$
 - Some are even more complex: Series of dice rolls: 1,3,5,3,2
 - Conditional probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$
 - Independent events: $P(A|B) = P(A)$ or $P(A \cap B) = P(A) \times P(B)$
 - Bayes theorem: relates $P(A|B)$ to $P(B|A)$

- **Random variables:**
 - Mean, Variance, Standard deviation. How to work with $E(g(X))$
 - Discrete (Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative binomial, Hypergeometric, Power law);
 - PMF: $f(x) = \text{Prob}(X=x)$; CDF: $F(x) = \text{Prob}(X \leq x)$;
 - Continuous (Uniform, Exponential, Erlang, Gamma, Normal, Log-normal);
 - PDF: $f(x)$ such that $\text{Prob}(X \text{ inside } A) = \int_A f(x) dx$; CDF: $F(x) = \text{Prob}(X \leq x)$

- **Next step:** work with **multiple random variables** measured together in the same series of random experiments
Concept of Joint Probabilities

• Biological systems are usually described not by a single random variable but by many random variables

• Example: The expression state of a human cell: 20,000 random variables X_i for each of its genes

• A joint probability distribution describes the behavior of several random variables

• We will start with just two random variables X and Y and generalize when necessary
Joint Probability Mass Function Defined

The joint probability mass function of the discrete random variables X and Y, denoted as $f_{XY}(x, y)$, satisfies:

1. $f_{XY}(x, y) \geq 0$ \hspace{1cm} \text{All probabilities are non-negative}$

2. $\sum_{x} \sum_{y} f_{XY}(x, y) = 1$ \hspace{1cm} \text{The sum of all probabilities is 1}$

3. $f_{XY}(x, y) = P(X = x, Y = y)$ \hspace{1cm} (5-1)
Example 5-1: # Repeats vs. Signal Bars

You use your cell phone to check your airline reservation. It asks you to speak the name of your departure city to the voice recognition system.

- Let Y denote the number of times you have to state your departure city.
- Let X denote the number of bars of signal strength on your cell phone.

<table>
<thead>
<tr>
<th>y = number of times city name is stated</th>
<th>x = number of bars of signal strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01 0.02 0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.02 0.03 0.20</td>
</tr>
<tr>
<td>3</td>
<td>0.02 0.10 0.05</td>
</tr>
<tr>
<td>4</td>
<td>0.15 0.10 0.05</td>
</tr>
</tbody>
</table>

Figure 5-1 Joint probability distribution of X and Y. The table cells are the probabilities. Observe that more bars relate to less repeating.
Marginal Probability Distributions (discrete)

For a discrete joint PDF, there are marginal distributions for each random variable, formed by summing the joint PMF over the other variable.

\[f_X(x) = \sum_y f_{XY}(x, y) \]
\[f_Y(y) = \sum_x f_{XY}(x, y) \]

Called marginal because they are written in the margins

\(y \) = number of times city name is stated	\(x \) = number of bars of signal strength			
	1	2	3	\(f_Y(y) \)
1	0.01	0.02	0.25	0.28
2	0.02	0.03	0.20	0.25
3	0.02	0.10	0.05	0.17
4	0.15	0.10	0.05	0.30

\[f_X(x) = \begin{bmatrix} 0.20 & 0.25 & 0.55 & 1.00 \end{bmatrix} \]

Figure 5-6 From the prior example, the joint PMF is shown in green while the two marginal PMFs are shown in purple.
Mean & Variance of X and Y are calculated using marginal distributions

<table>
<thead>
<tr>
<th>y = number of times city name is stated</th>
<th>x = number of bars of signal strength</th>
<th>f(y) =</th>
<th>y*f(y) =</th>
<th>y^2*f(y) =</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.25</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>0.03</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.10</td>
<td>0.05</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>0.15</td>
<td>0.10</td>
<td>0.05</td>
<td>0.30</td>
</tr>
<tr>
<td>f(x) =</td>
<td>0.20</td>
<td>0.25</td>
<td>0.55</td>
<td>1.00</td>
</tr>
<tr>
<td>x*f(x) =</td>
<td>0.20</td>
<td>0.50</td>
<td>1.65</td>
<td>2.35</td>
</tr>
<tr>
<td>x^2*f(x) =</td>
<td>0.20</td>
<td>1.00</td>
<td>4.95</td>
<td>6.15</td>
</tr>
</tbody>
</table>

\[\mu_X = E(X) = 2.35; \quad \sigma_X^2 = V(X) = 6.15 - 2.35^2 = 6.15 - 5.52 = 0.6275 \]

\[\mu_Y = E(Y) = 2.49; \quad \sigma_Y^2 = V(Y) = 7.61 - 2.49^2 = 7.61 - 16.20 = 1.4099 \]
Conditional Probability Distributions

Recall that
\[P(B|A) = \frac{P(A \cap B)}{P(A)} \]

\[P(Y=y|X=x) = \frac{P(X=x,Y=y)}{P(X=x)} = \frac{f(x,y)}{f_X(x)} \]

From Example 5-1

\[P(Y=1|X=3) = \frac{0.25}{0.55} = 0.455 \]
\[P(Y=2|X=3) = \frac{0.20}{0.55} = 0.364 \]
\[P(Y=3|X=3) = \frac{0.05}{0.55} = 0.091 \]
\[P(Y=4|X=3) = \frac{0.05}{0.55} = 0.091 \]

\[\text{Sum} = 1.00 \]

Note that there are 12 probabilities conditional on \(X \), and 12 more probabilities conditional upon \(Y \).
Joint Random Variable Independence

• Random variable independence means that knowledge of the value of X does not change any of the probabilities associated with the values of Y.

• Opposite: Dependence implies that the values of X are influenced by the values of Y.
Independence for Discrete Random Variables

• Remember independence of events (slide 13 lecture 4): Events are independent if any one of the three conditions are met:
 1) \(P(A \mid B) = P(A \cap B) / P(B) = P(A) \) or
 2) \(P(B \mid A) = P(A \cap B) / P(A) = P(B) \) or
 3) \(P(A \cap B) = P(A) \cdot P(B) \)

• Random variables independent if all events \(A \) that \(Y=y \) and \(B \) that \(X=x \) are independent if any one of these conditions is met:
 1) \(P(Y=y \mid X=x) = P(Y=y) \) for any \(x \) or
 2) \(P(X=x \mid Y=y) = P(X=x) \) for any \(y \) or
 3) \(P(X=x, Y=y) = P(X=x) \cdot P(Y=y) \) for every pair \(x \) and \(y \)
X and Y are Bernoulli variables

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>2/6</td>
<td>1/6</td>
</tr>
<tr>
<td>X=1</td>
<td>2/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

What is the marginal $P_Y(Y=0)$?

A. $\frac{1}{6}$
B. $\frac{2}{6}$
C. $\frac{3}{6}$
D. $\frac{4}{6}$
E. I don’t know

Get your i-clickers
X and Y are Bernoulli variables

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>2/6</td>
<td>1/6</td>
</tr>
<tr>
<td>X=1</td>
<td>2/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

What is the conditional $P(X=0|Y=1)$?

A. 2/6
B. 1/2
C. 1/6
D. 4/6
E. I don’t know

Get your i-clickers
X and Y are Bernoulli variables

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>2/6</td>
<td>1/6</td>
</tr>
<tr>
<td>X=1</td>
<td>2/6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Are they independent?

A. yes
B. no
C. I don’t know

Get your i-clickers
X and Y are Bernoulli variables

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>X=1</td>
<td>0</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Are they independent?

A. yes
B. no
C. I don’t know

Get your i-clickers
Joint Probability Density Function Defined

The joint probability density function for the continuous random variables X and Y, denotes as $f_{XY}(x,y)$, satisfies the following properties:

1. $f_{XY}(x,y) \geq 0$ for all x, y

2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) \, dx \, dy = 1$

3. $P((X,Y) \subseteq R) = \int_{R} \int f_{XY}(x,y) \, dx \, dy$ \hspace{1cm} (5-2)

Figure 5-2 Joint probability density function for the random variables X and Y. Probability that (X, Y) is in the region R is determined by the volume of $f_{XY}(x,y)$ over the region R.

Sec 5-1.1 Joint Probability Distributions

16
Figure 5-3 Joint probability density function for the continuous random variables X and Y of expression levels of two different genes. Note the asymmetric, narrow ridge shape of the PDF – indicating that small values in the X dimension are more likely to occur when small values in the Y dimension occur.
Marginal Probability Distributions (continuous)

• Rather than summing a discrete joint PMF, we integrate a continuous joint PDF.
• The marginal PDFs are used to make probability statements about one variable.
• If the joint probability density function of random variables X and Y is $f_{XY}(x,y)$, the marginal probability density functions of X and Y are:

$$f_X(x) = \int f_{XY}(x,y) \, dy$$
$$f_Y(y) = \int f_{XY}(x,y) \, dx$$

$$f_X(x) = \sum_y f_{XY}(x,y)$$
$$f_Y(y) = \sum_x f_{XY}(x,y)$$

(5-3)
Conditional Probability Density Function Defined

Given continuous random variables \(X \) and \(Y \) with joint probability density function \(f_{XY}(x, y) \), the conditional probability density function of \(Y \) given \(X=x \) is

\[
f_{Y|X}(y) = \frac{f_{XY}(x, y)}{f_X(x)} = \frac{f_{XY}(x, y)}{\int_y f_{XY}(x, y) \, dy} \quad \text{if } f_X(x) > 0 \quad (5-4)
\]

Compare to discrete: \(P(Y=y|X=x)=f_{xy}(x,y)/f_X(x) \)

which satisfies the following properties:

(1) \(f_{Y|X}(y) \geq 0 \)

(2) \(\int f_{Y|X}(y) \, dy = 1 \)

(3) \(P(Y \subset B|X=x) = \int f_{Y|X}(y) \, dy \) for any set \(B \) in the range of \(Y \)
Conditional Probability Distributions

• Conditional probability distributions can be developed for multiple random variables by extension of the ideas used for two random variables.

• Suppose \(p = 5 \) and we wish to find the distribution of \(X_1, X_2 \) and \(X_3 \) conditional on \(X_4 = x_4 \) and \(X_5 = x_5 \).

\[
f_{X_1 X_2 X_3 | x_4 x_5} (x_1, x_2, x_3) = \frac{f_{X_1 X_2 X_3 X_4 X_5} (x_1, x_2, x_3, x_4, x_5)}{f_{X_4 X_5} (x_4, x_5)}
\]

for \(f_{X_4 X_5} (x_4, x_5) > 0 \).
Independence for Continuous Random Variables

For random variables X and Y, if any one of the following properties is true, the others are also true. Then X and Y are independent.

1. $f_{XY}(x, y) = f_X(x) \cdot f_Y(y)$
2. $f_{Y|X}(y) = f_Y(y)$ for all x and y with $f_X(x) > 0$
3. $f_{X|Y}(y) = f_X(x)$ for all x and y with $f_Y(y) > 0$
4. $P(X \subset A, Y \subset B) = P(X \subset A) \cdot P(Y \subset B)$ for any sets A and B in the range of X and Y, respectively.
Example 1:
Uniform distribution in the square $-1 < x < 1$, $-1 < y < 1$

\[
\begin{align*}
\left\{\begin{array}{ll}
fx \cdot y (x, y) = c & \text{if } -1 < x < 1 \text{ and } -1 < y < 1 \\
0 & \text{otherwise}
\end{array}\right.
\end{align*}
\]

\[1 = \int_{\text{square}} dxdy \; f_{x \cdot y} (x, y) = c \cdot \text{Area} = c \cdot 4 \Rightarrow c = \frac{1}{4}\]
Are \(X\) and \(Y\) independent? \(\text{Yes they are}\)

Let's test if \(-f_{XY}(x, y) = f_X(x) \cdot f_Y(y)\)

\[
\int_{-\infty}^{\infty} f_X(x) = \int_{-1}^{1} f_{XY}(x, y) \, dy = \\
= \int_{-1}^{1} \frac{1}{2} \, dy = \frac{1}{2} \quad \text{if} \quad -1 < x < 1
\]

Same for \(f_Y(y) = \frac{1}{2} \) if \(-1 < y < 1\)

\[
\frac{1}{4} = f_{XY}(x, y) = \frac{1}{2} \cdot \frac{1}{2} = f_X(x) \cdot f_Y(y)
\]

0 otherwise if both \(x\) and \(y\) are in \([-1, 1]\)
X and Y are uniformly distributed in the disc \(x^2 + y^2 \leq 1 \)

Are they independent?

A. yes

B. no

C. I could not figure it out

Get your i-clickers
Joint PDF \(f_{xy}(x, y) = \frac{1}{\text{area}} = \frac{1}{\pi} \) if \(x, y \) in the disc

Marginal distributions:

\[
f_x(x) = \int_{-\infty}^{\infty} f_{xy}(x, y) \, dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{dy}{\pi} = \frac{2\sqrt{1-x^2}}{\pi}
\]

Same for \(f_y(y) = \frac{2\sqrt{1-y^2}}{\pi} \)

\[
\frac{1}{\pi} = f_{xy}(x, y) \neq \frac{2}{\pi} \sqrt{1-x^2} \cdot \frac{2}{\pi} \sqrt{1-y^2} = f_x(x) \cdot f_y(y)
\]

Variables are **NOT** independent