Continuous Probability Distributions

Uniform Distribution
Important terms & concepts for discrete random variables

• Probability Mass Function (PMF)
• Cumulative Distribution Function (CDF)
• Complementary Cumulative Distribution Function (CCDF)
• Expected value
• Mean
• Variance
• Standard deviation
• Uniform distribution
• Bernoulli distribution/trial
• Binomial distribution
• Poisson distribution
• Geometric distribution
• Negative binomial distribution

Boldface and underlined are the same for continuous distributions
Which distribution is this?

\[\binom{n}{x} p^x (1 - p)^{n-x} \]

A. Uniform
B. Binomial
C. Geometric
D. Negative Binomial
E. Poisson

Get your i-clickers
Which distribution is this?

\[\binom{n}{x} p^x (1 - p)^{n-x} \]

A. Uniform
B. Binomial
C. Geometric
D. Negative Binomial
E. Poisson

Get your i-clickers
Which distribution is this?

\[
\binom{x - 1}{r - 1} (1 - p)^{x-r} p^r
\]

A. Uniform
B. Binomial
C. Geometric
D. Negative Binomial
E. Poisson

Get your i-clickers
Which distribution is this?

\[
\binom{x-1}{r-1}(1-p)^{x-r}p^r
\]

A. Uniform
B. Binomial
C. Geometric
D. Negative Binomial
E. Poisson

Get your i-clickers
Which distribution is this?

\[e^{-\lambda} \frac{\lambda^x}{x!} \]

A. Uniform
B. Binomial
C. Geometric
D. Negative Binomial
E. Poisson

Get your i-clickers
Which distribution is this?

[Formula: $e^{-\lambda} \frac{\lambda^x}{x!}$]

A. Uniform
B. Binomial
C. Geometric
D. Negative Binomial
E. Poisson

Get your i-clickers
<table>
<thead>
<tr>
<th>Name</th>
<th>Probability Distribution</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform</td>
<td>(\frac{1}{n}, a \leq b)</td>
<td>(\frac{(b + a)}{2})</td>
<td>(\frac{(b - a + 1)^2 - 1}{12})</td>
</tr>
<tr>
<td>Binomial</td>
<td>(\binom{n}{x} p^x (1 - p)^{n-x}), (x = 0, 1, \ldots, n), (0 \leq p \leq 1)</td>
<td>(np)</td>
<td>(np(1 - p))</td>
</tr>
<tr>
<td>Geometric</td>
<td>((1 - p)^{x-1}p), (x = 1, 2, \ldots, 0 \leq p \leq 1)</td>
<td>(\frac{1}{p})</td>
<td>(\frac{(1 - p)}{p^2})</td>
</tr>
<tr>
<td>Negative binomial</td>
<td>(\binom{x - 1}{r - 1} (1 - p)^{x-r} p^r), (x = r, r + 1, r + 2, \ldots, 0 \leq p \leq 1)</td>
<td>(\frac{r}{p})</td>
<td>(\frac{r(1 - p)}{p^2})</td>
</tr>
<tr>
<td>Poisson</td>
<td>(\frac{e^{-\lambda} \lambda^x}{x!}), (x = 0, 1, 2, \ldots, 0 < \lambda)</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
</tr>
</tbody>
</table>
Continuous & Discrete Random Variables

• A **discrete random variable** is usually integer number
 – N – the number of proteins in a cell
 – D – number of nucleotides different between two sequences

• A **continuous random variable** is a real number
 – C=N/V – the concentration of proteins in a cell of volume V
 – Percentage D/L*100% of different nucleotides in protein sequences of different lengths L (depending on set of L’s may be discrete but dense)
Probability Mass Function (PMF)

- **X** – discrete random variable

- Probability Mass Function: $f(x) = P(X = x)$
 – the probability that X is exactly equal to x

Probability Mass Function for the # of mismatches in 4-mers

<table>
<thead>
<tr>
<th>X</th>
<th>$P(X=x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6561</td>
</tr>
<tr>
<td>1</td>
<td>0.2916</td>
</tr>
<tr>
<td>2</td>
<td>0.0486</td>
</tr>
<tr>
<td>3</td>
<td>0.0036</td>
</tr>
<tr>
<td>4</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

$$\sum_x P(X=x) = 1.0000$$
Probability Density Function (PDF)

Density functions, in contrast to mass functions, distribute probability continuously along an interval.

Figure 4-2 Probability is determined from the area under $f(x)$ from a to b.

$P(a < X < b)$
For a continuous random variable X, a probability density function is a function such that

1. $f(x) \geq 0$ means that the function is always non-negative.
2. $\int_{-\infty}^{\infty} f(x)dx = 1$
3. $P(a \leq X \leq b) = \int_{a}^{b} f(x)dx = \text{area under } f(x)dx \text{ from } a \text{ to } b$
Normalized histogram approximates PDF

A histogram is a graphical display of data showing a series of adjacent rectangles. Each rectangle has a base which represents an interval of data values. The height of the rectangle is a number of events in the sample within the base.

When base length is narrow, the histogram could be normalized to approximate PDF \(f(x) \):

\[
\text{height of each rectangle} = \frac{\text{(# of events within base)}}{\text{(total # of events)} / \text{width of its base}}.
\]

Normalized histogram approximates a probability density function.
Cumulative Distribution Functions (CDF & CCDF)

The cumulative distribution function (CDF) of a continuous random variable X is,

$$F(x) = P(X \leq x) = \int_{-\infty}^{x} f(u) \, du \quad \text{for} \quad -\infty < x < \infty \quad (4-3)$$

One can also use the inverse cumulative distribution function or complementary cumulative distribution function (CCDF)

$$F_>(x) = P(X > x) = \int_{x}^{\infty} f(u) \, du \quad \text{for} \quad -\infty < x < \infty$$

Definition of CDF for a continuous variable is the same as for a discrete variable
Density vs. Cumulative Functions

• The probability density function (PDF) is the derivative of the cumulative distribution function (CDF).

\[f(x) = \frac{dF(x)}{dx} = \frac{dF_>(x)}{dx} \]

as long as the derivative exists.
Mean & Variance

Suppose X is a continuous random variable with probability density function $f(x)$. The mean or expected value of X, denoted as μ or $E(X)$, is

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x) \, dx \quad (4-4)$$

The variance of X, denoted as $V(X)$ or σ^2, is

$$\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx = \int_{-\infty}^{\infty} x^2 f(x) \, dx - \mu^2$$

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

Sec 4-4 Mean & Variance of a Continuous Random Variable
Gallery of Useful Continuous Probability Distributions
Continuous Uniform Distribution

• This is the simplest continuous distribution and analogous to its discrete counterpart.

• A continuous random variable X with probability density function

\[f(x) = \frac{1}{b-a} \text{ for } a \leq x \leq b \]

(4-6)

Compare to discrete

\[f(x) = \frac{1}{(b-a+1)} \]

Figure 4-8 Continuous uniform PDF
Comparison between Discrete & Continuous Uniform Distributions

Discrete:

• PMF: \(f(x) = 1/(b-a+1) \)
• Mean and Variance:
 \[\mu = E(x) = (b+a)/2 \]
 \[\sigma^2 = V(x) = [(b-a+1)^2-1]/12 \]

Continuous:

• PMF: \(f(x) = 1/(b-a) \)
• Mean and Variance:
 \[\mu = E(x) = (b+a)/2 \]
 \[\sigma^2 = V(x) = (b-a)^2/12 \]
X is a continuous random variable with a uniform distribution between 0 and 3. What is $P(X=1)$?

A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. 0
D. Infinity
E. I have no idea

Get your i-clickers
X is a **continuous** random variable with a uniform distribution between 0 and 3.

What is $P(X=1)$?

A. $\frac{1}{4}$

B. $\frac{1}{3}$

C. 0

D. Infinity

E. I have no idea

Get your i-clickers
X is a **continuous** random variable with a uniform distribution between 0 and 3.

What is $P(X<1)$?

A. 1/4
B. 1/3
C. 0
D. Infinity
E. I have no idea

Get your i-clickers
X is a **continuous** random variable with a uniform distribution between 0 and 3.

What is $P(X<1)$?

A. 1/4

B. 1/3

C. 0

D. Infinity

E. I have no idea

Get your i-clickers
Poisson process

Discrete events happen at rate λ

Expected number of events in time x is λx

The actual number of events N is a Poisson distributed discrete random variable

$P(N = n) = \frac{(\lambda x)^n}{n!} e^{-\lambda x}$

Why Poisson? Divide x into many tiny intervals of length Δx

$p = \lambda \Delta x$

$L = \frac{x}{\Delta x}$

$E(N_x) = \rho L = \lambda x$

$\rho \Delta x \to 0$, $L \sim \frac{1}{\Delta x} \to \infty$ Poisson
Constant rate (AKA Poisson) processes

• Let’s assume that proteins are produced by all ribosomes in the cell at a rate r per second.
• The expected number of proteins produced in x seconds is $r \cdot x$.
• The actual number of proteins N_x is a discrete random variable following a Poisson distribution with mean $r \cdot x$:

$$P_{N}(N_x=n)=\exp(-r\cdot x)(r\cdot x)^n/n! \quad E(N_x)=rx$$

• Why Discrete Poisson Distribution?
 – Divide time into many tiny intervals of length $\Delta x \ll 1/r$
 – The probability of success (protein production) per internal is small: $p_{success}=r\Delta x \ll 1$,
 – The number of intervals is large: $n= x/\Delta x \gg 1$
 – Mean is constant: $\lambda=E(N_x)=p_{success} \cdot n= r\Delta x \cdot x/\Delta x = r \cdot x$
 – In the limit $\Delta x \ll x$, $p_{success}$ is small and n is large, thus Binomial distribution \rightarrow Poisson distribution
Exponential Distribution Definition

Exponential random variable X describes interval between two successes of a constant rate (Poisson) random process with success rate p per unit interval.

The probability density function of X is:

$$f(x) = re^{-rx} \text{ for } 0 \leq x < \infty$$

Closely related to the discrete geometric distribution

$$f(x) = p(1-p)^{x-1} = p \left(e^{(x-1)\ln(1-p)} \approx pe^{-px} \right) \text{ for small } p$$
PDF of X defined as time interval between consecutive events.

CDF: $P(X < x) = \int_0^x f(u) \, du$

CCDF: $P(X > x) = \int_x^{\infty} f(u) \, du = P(N_x = 0) = \frac{(rx)^n}{n!} e^{-rx}$

$P(N_x = n) = \frac{(rx)^n}{n!} e^{-rx}$

CCDF: $P(x > x) = e^{-rx}$

PDF: $f(x) = -e^{-rx}$
What is the interval X between two successes of a constant rate process?

- X is a continuous random variable.
- CDF: $P_X(X>x) = P_{N}(N_X=0)=\exp(-r \cdot x)$.
 - Remember: $P_{N}(N_X=n)=\exp(-r \cdot x) \ (r \cdot x)^n/n!$
- PDF: $f_X(x)=-dCDF_X(x)/dx = r \cdot \exp(-r \cdot x)$
- We started with a discrete Poisson distribution where time x was a parameter.
- We ended up with a continuous exponential distribution.