BIOE 298, SECTIONS MFI & B

PRACTICE EXAM 3

You have 80 minutes to complete this exam.
You may use notes or printouts from the course website,
but no electronic resources.

Circle your final answer for each question.
Part I (20 points; 4 points each)

(1) Is the vector \(\begin{pmatrix} a \\ b \end{pmatrix} \) an eigenvector of the matrix \(\begin{pmatrix} 3 & 4/b \\ 0 & 1 \end{pmatrix} \)?

(2) True or False. Let \(A \in \mathbb{R}^{n \times n} \). The matrix \(A \) is perfect if the SVD of \(A \) reveals \(n \) distinct singular values (the diagonal entries along \(\Sigma \)).

(3) We showed that quadratic programs can be solved to global optimality if the quadratic objective is convex. Is the quadratic program that results from the Support Vector Machine (SVM) problem solvable to global optimality? Why or why not?

(4) Give a set of three vectors that span the space \(\mathbb{R}^2 \).

Can your set of vectors also serve as a basis for \(\mathbb{R}^2 \)?

(5) True or False. Adding principal components to a Principal Components Regression model always increases the accuracy of the model but makes the model more difficult to interpret.
Part II (30 points)

Construct an orthonormal basis from the vectors \[^{\begin{pmatrix} 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix}}\].

Decompose the vector \[^{\begin{pmatrix} 1 \\ -1 \end{pmatrix}}\] onto your basis.
Part III (30 points)

Convert the following system of ODEs into the matrix form $\frac{dx}{dt} = Ax$, $x(0) = x_0$.

\[
\begin{align*}
\frac{dx_1}{dt} &= -x_1 + 2x_2 \\
\frac{dx_2}{dt} &= 3x_1 + 4x_2 \\
x_1(0) &= 0, \quad x_2(0) = 1
\end{align*}
\]
If the eigenvalues and eigenvectors of \mathbf{A} are

$$\lambda_1 = -2, \mathbf{v}_1 = \begin{pmatrix} -0.9 \\ 0.4 \end{pmatrix}, \quad \lambda_2 = 5, \mathbf{v}_2 = \begin{pmatrix} -0.3 \\ -1 \end{pmatrix}$$

what is the solution to the systems of ODEs?

Is the system stable? Why or why not?
Part IV (20 points)

Define an adjacency matrix A for the following four-node, undirected network.

Give the following output from Matlab, report the most “central” node in the network and its centrality score.

```matlab
>> [V,L] = eig(A)

V =

-0.5573  -0.0000  0.7071  -0.4352
0.4352   0.7071  -0.0000 -0.5573
0.4352  -0.7071  -0.0000 -0.5573
-0.5573  -0.0000 -0.7071  -0.4352

L =

-1.5616   0     0     0
0   -1.0000  0     0
0     0   -0.0000  0
0     0     0      2.5616
```