BIOE 298, SECTIONS MFI & B

PRACTICE EXAM 1

You have 80 minutes to complete this exam.
You may use notes or printouts from the course website,
but no electronic resources.
PRACTICE EXAM 1

PART I (40 points; 4 points each)

(1) True or False. The matrix \(\begin{pmatrix} 3 & 2 & 1 \\ 1 & 0 & -1 \end{pmatrix}\) has an inverse.

(2) True or False. There exists a real number \(\theta\) such that \(\begin{pmatrix} 1 \\ \theta \\ 1/2 \end{pmatrix}\) is a unit vector.

(3) We said (many times) that the integers are not a field since they have additive inverses \((-a)\) for every element but not multiplicative inverses \((a^{-1})\). We can construct a set that contains both additive and multiplicative inverses using the integers by collecting \(2^i\) and \(-2^i\) for every integer \(i\):

\[
\{\ldots, \pm 2^{-2}, \pm 2^{-1}, \pm 2^0, \pm 2^1, \pm 2^2, \ldots\}
\]

Is this set a field?

(4) \(\|x\| = 8\). What is \(\|-3x\|\)?

(5) Let \(\begin{pmatrix} 0 & 1 & -2 \\ 0 & -1 & 0 \\ 3 & 2 & 1 \end{pmatrix}\) \(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\) = \(\begin{pmatrix} 2 \\ -8 \\ 12 \end{pmatrix}\). What is \(x_2\)?
(6) True or False. If the angle between \(x = \begin{pmatrix} 2a \\ 1 \\ 0 \end{pmatrix} \) and \(y = \begin{pmatrix} 4 \\ a \\ 2 \end{pmatrix} \) is 135°, then \(x \cdot y = 7 \).

(7) Which vectors are orthogonal to \(\begin{pmatrix} 4 \\ 0 \\ 2 \\ 0 \end{pmatrix} \)?

(a) \(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \)
(b) \(\begin{pmatrix} 1/4 \\ 0 \\ 1/2 \\ 0 \end{pmatrix} \)
(c) \(\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \)
(d) \(\begin{pmatrix} 0 \\ -12 \\ 0 \\ 8 \end{pmatrix} \)

(8) True or False. \(AB \neq BA \) for all matrices \(A \) and \(B \), even if \(A \) and \(B \) are conformable.

(9) Which of the following differential equations are linear
(a) \(\frac{\partial^2 u}{\partial x \partial y} + \sin(xy)u = 4 \)
(b) \(\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial u}{\partial r} \right) = 0 \)
(c) \(\frac{d^2 u}{dx^2} + 3e^u x \frac{du}{dx} + u = 1 \)
(d) \(\frac{1}{u} \frac{du}{dt} = t \)

(10) What is the rank of the matrix \(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \)?
Part II (30 points)

Find the inverse of the matrix $A = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}$

Use the inverse to solve $Ax = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ and $Ax = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$
Part III (30 points)

Write equations for the finite difference approximation for the following ODE at four nodes spanning $[0, 3]$.

$$\frac{d^2u}{dx^2} - 4u = x^2, \quad u(0) = 1, \ u(3) = 4$$

Rewrite the equations as a matrix equation of the form $Ax = y$.