Fitting SVM models in Matlab

• `mdl = fitcsvm(X,y)`
 • fit a classifier using SVM
 • `X` is a matrix
 • columns are predictor variables
 • rows are observations
 • `y` is a response vector
 • +1/-1 for each row in `X`
 • can be any set of integers or strings
 • returns a `ClassifierSVM` object, which we stored in variable `mdl`

• `predict(mdl,newX)`
 • returns responses for matrix `newX` using the classifier `mdl`
Example: Heart Attack prediction from Blood Pressure and Cholesterol

<table>
<thead>
<tr>
<th>BloodPressure</th>
<th>Cholesterol</th>
<th>HeartAttack</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>160</td>
<td>-1</td>
</tr>
<tr>
<td>132</td>
<td>166</td>
<td>-1</td>
</tr>
<tr>
<td>128</td>
<td>168</td>
<td>-1</td>
</tr>
<tr>
<td>89</td>
<td>169</td>
<td>-1</td>
</tr>
<tr>
<td>86</td>
<td>170</td>
<td>-1</td>
</tr>
<tr>
<td>86</td>
<td>175</td>
<td>-1</td>
</tr>
<tr>
<td>111</td>
<td>177</td>
<td>-1</td>
</tr>
<tr>
<td>132</td>
<td>179</td>
<td>-1</td>
</tr>
<tr>
<td>108</td>
<td>185</td>
<td>-1</td>
</tr>
<tr>
<td>118</td>
<td>193</td>
<td>-1</td>
</tr>
<tr>
<td>120</td>
<td>198</td>
<td>-1</td>
</tr>
<tr>
<td>102</td>
<td>205</td>
<td>-1</td>
</tr>
<tr>
<td>164</td>
<td>208</td>
<td>1</td>
</tr>
<tr>
<td>163</td>
<td>211</td>
<td>1</td>
</tr>
<tr>
<td>177</td>
<td>215</td>
<td>1</td>
</tr>
<tr>
<td>146</td>
<td>219</td>
<td>1</td>
</tr>
<tr>
<td>152</td>
<td>223</td>
<td>1</td>
</tr>
<tr>
<td>164</td>
<td>224</td>
<td>1</td>
</tr>
<tr>
<td>170</td>
<td>227</td>
<td>1</td>
</tr>
<tr>
<td>153</td>
<td>242</td>
<td>1</td>
</tr>
</tbody>
</table>

![Graph showing relationship between mean arterial pressure and cholesterol levels](image)
Example: Heart Attack prediction from Blood Pressure and Cholesterol

```matlab
mdl = fitcsvm([ha_data.BloodPressure ha_data.Cholesterol], ha_data.HeartAttack)
ha_data.predicted = predict(mdl, [ha_data.BloodPressure ha_data.Cholesterol])
```
What if we cannot perfectly classify the data?
What if we cannot perfectly classify the data?

mdl = fitcsvm([ha_data.BloodPressure ha_data.Cholesterol], ha_data.HeartAttack)
ha_data.predicted = predict(mdl, [ha_data.BloodPressure ha_data.Cholesterol])
Fundamental Theorem of Modeling*

• Data used for training cannot be used for validation.

• Why not? To avoid overfitting.
• Imagine we create a model that predicts a person’s characteristic (e.g. eye color, weight, height) from their name.
• We train our model using the names and characteristics of people in our class.
• Everyone in our class has a different name, so the mapping is 1-to-1. If we tested our model with anyone in our class, it would predict their characteristics perfectly!
• But clearly this is a horrible model; there could be many other people with our same name but different characteristics. We only think our model is perfect because we tested on data we trained with.

*this is not actually a theorem.
What are our options?

1. Don’t validate your model.
 - Not a scientifically valid approach.

2. Train with only a subset of your data; leave the rest for validation.
 - Your model would be underpowered.
 - Fit is sensitive to which points you left out.

3. Collect new data to validate the trained model.
 - Can be expensive and/or infeasible.
 - Also, wouldn’t you want to train with these data as well?
Best solution: **Cross Validation**

- We split our data into two groups: *training* and *testing*
- Train and test the model using the respective sets.
- Repeat this process several times.

Advantages of Cross Validation
- All points are used for both training and testing (at separate times).
- Overfit models will perform poorly, making them easy to identify.
- Good models will perform consistently across all testing sets.

- The “final” model is training using the entire dataset.
Example: training an SVM Classifier

• n data points

• Method 1: Leave-One-Out (L1O) Cross Validation
 1. Remove the first data point.
 2. Train on the remaining n-1 points.
 3. Test the removed point.
 4. Repeat using point 2 – n.
 5. Final accuracy: (# correct) / n
Method 2: \(k \)-fold Cross Validation

• \(n \) data points

• Split the points into \(k \) evenly sized groups.

• For each group:
 • Remove the group from the data.
 • Training on the remaining points.
 • Validate using the removed points.

• Example: \(k = 4 \)
Comparing L1O to k-fold Cross Validation

• L1O Advantages
 • Trained models are closest to the final model, since only one point is removed.

• L1O Disadvantages
 • If models take a long time to train, L1O can be infeasible.

• k-fold Advantages
 • Faster to train
 • More stringent (works well with n/k points removed).
 • Statistical power for each sub-model, since multiple points tested.

• k-fold Disadvantages
 • What value of k should we use?

Note that when $k=n$, the methods are identical!
Picking k for Cross Validation (XV)

- For large datasets, $k=10$ is commonly used.

- For biomedical applications, samples can be noisy.

- Each cycle uses n/k points for testing and $n(1-1/k)$ points for training. Thus, a k-fold XV has $k-1$ times more points used for training than testing. Try to keep $k > 3-4$.

k-fold Cross Validation in Matlab

- `mdl = fitcsvm(...)`
- `xval = crossval(mdl,'Kfold',5)`
 - default for Kfold is 10
- `kfoldLoss(xval)`
 - Gives the average misclassification rate ("loss") across all folds

```matlab
mdl = fitcsvm([ha_data.BloodPressure ha_data.Cholesterol], ha_data.HeartAttack)
xval = crossval(mdl,'KFold',10);
kfoldLoss(xval)
   ans = 0.0909
```