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Eigenvalues and Eigenvectors

Consider the matrix

A =

 
2 7

�1 �6

!

Multiplying A by the vector x1 =

 
�1

1

!
gives an interesting result.

Ax1 =

 
2 7

�1 �6

! 
�1

1

!
=

 
5

�5

!
= �5

 
�1

1

!
= �5x1

Similarly, with x2 =

 
�7

1

!
:

Ax2 =

 
2 7

�1 �6

! 
�7

1

!
=

 
�7

1

!
= x2

In both cases, multiplication by A returned a scalar multiple of the

vector (-5 for x1 and 1 for x2). This is not a property of solely the

matrix A, since the vector x3 =

 
1

1

!
is not transformed by a single

scalar.

Ax3 =

 
2 7

�1 �6

! 
1

1

!
=

 
9

5

!
6= �x2

Similarly, the results we are seeing are not properties of the vectors x1

and x2, since they do not become scalar multiples of themselves when

multiplied by other matrices.

B =

 
2 1

�3 0

!

Bx1 =

 
2 1

�3 0

! 
�1

1

!
=

 
�1

3

!
6= �x1

Bx2 =

 
2 1

�3 0

! 
�7

1

!
=

 
�13

21

!
6= �x2
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The phenomena we’re observing is a result of the paring between

the matrix A and the vectors x1 and x2. In general, we see that mul-

tiplying a vector by a matrix returns a scalar multiple of the vector,

or

Ax = �x

Any vector x that obeys the above relationship is called an eigenvector

of the matrix A. The scalar � is called the eigenvalue associated with Eigenvectors were originally called
characteristic vectors, as they de-
scribe the character of the matrix.
German mathematicians dropped this
nomenclature in favor of the German
prefix “eigen-”, which mean “own”.
An eigenvector can be viewed as one
of a matrix’s “own” vectors since it
is not rotated when transformed by
multiplication.

the eigenvector x. The vector x is an eigenvector of the matrix A; it is

not generally an eigenvector of other matrices.

In the example above, the matrix A =

 
2 7

�1 �6

!
has two eigen-

vectors, v1 =

 
�1

1

!
with eigenvalue �1 = �5, and v2 =

 
�7

1

!
with

eigenvector �2 = 1.

9.1 Properties of Eigenvectors and Eigenvalues

Only square matrices have eigenvectors and eigenvalues. An n by n To understand why the matrix must
be square, remember that a non-
square matrix with m rows and n
columns transforms an n-dimensional
vectors into an m-dimensional vector.
Clearly, the m-dimensional output
cannot be the n-dimensional input
multiplied by a scalar!

matrix of real numbers can have up to n distinct eigenvectors. Each

eigenvector is associated with an eigenvalue, although the eigenvalues

can be duplicated. Said another way, two eigenvectors v1 and v2 of a

matrix will never be the same, but the corresponding eigenvalues �1

and �2 can be identical.

Although the number of eigenvectors may vary, all eigenvectors for

a matrix are linearly independent. Thus, if an n by n matrix has n

eigenvectors, these vectors can be used as a basis (called an eigenba-

sis). If an eigenbasis exists for a matrix, decomposing vectors over An n by n matrix with n eigenvectors
and n distinct eigenvalues is called a
perfect matrix. As the name implies,
perfect matrices are great to find, but
somewhat uncommon.

this basis simplifies the process of matrix multiplication. To illus-

trate, imagine we decompose the vector x over a set of eigenvectors

v1, . . . ,vn. Decomposing x means we can find coe�cients a1, . . . , an
such that

x = a1v1 + · · ·+ anvn

Now let’s compute the product Ax. We multiply both sides of the

decomposition by A.

Ax = A (a1v1 + · · ·+ anvn)

We distribute the matrix A into the sum on the right hand side and

note that the constants ai can be moved in front of the matrix multi-

plication.

Ax = a1Av1 + · · ·+ anAvn

Remember that v1, . . . ,vn are eigenvectors of A, so Avi = �ivi. We

can simplify the previous expression to

Ax = a1�1v1 + · · ·+ an�nvn
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We don’t need to perform the multiplication at all! Instead, we can

scale each eigenvector by the eigenvalue. Multiplying again by the

matrix A multiplies each eigenvector by its eigenvalue. We use the notation A2 to denote
AA, A3 for AAA, and Ak for the
product of k matrices A.A

2
x = a1�

2

1
v1 + · · ·+ an�

2

nvn

A
k
x = a1�

k
1
v1 + · · ·+ an�

k
nvn

9.2 Computing Eigenvectors and Eigenvalues

We can use the relationship between matrix multiplication and eigen-

values to find eigenvectors for any matrix. Our computational ap-

proach is based on the following theorem.

Theorem. Given any (random) vector b, repeated multiplication by

the matrix A will converge to the eigenvector of A with the largest

magnitude eigenvalue – provided the largest eigenvalue is unique. Said

another way,

lim
k!1

A
k
b = vmax

Proof. We know that the product Ax can be expressed as a linear

combination of the eigenvectors and eigenvalues of A, i.e. Ax =

a1�1v1 + · · ·+ an�nvn. Thus

lim
k!1

Ab = lim
k!1

�
a1�

k
1
v1 + · · ·+ an�

k
nvn

�

As k increases, the values �k
i grow very large. However, the �i to not

grow at the same rate. The largest eigenvalue will grow the fastest.

At very large values of k, the term associated with the largest eigen-

value will dominate the entire sum, so the result will point in only

the direction of the associated eigenvector. Note that convergence to

a single eigenvector requires that the largest eigenvalue be distinct.

If two eigenvectors have the same (largest) eigenvalue, both terms in

the above sum would “blow up” at the same rate. Repeated multipli-

cations by A would then converge to the sum of the two associated

eigenvectors.

The above theorem allows us to find the eigenvector paired with

the largest eigenvalue. While the direction of the eigenvector doesn’t

change, its magnitude grows as the number of multiplication of A

increases. If convergence is slow, we might need to work with numbers

before finding the eigenvector. To avoid numerical di�culties, we

renormalize the vector after every multiplication by A. This algorithm

is called the Power Iteration method, which proceeds as follows:

1. Choose a random vector b0. For fastest convergence, it helps to

choose a vector close to vmax if possible. Normalize this vector to

product b̂0 = b0/ kb0k.
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2. Compute vector b1 = Ab̂0. Normalize this vector to give b̂1 =

b1/ kb1k.

3. Repeat step 2 to product b̂2, b̂3, . . . , b̂k. Stop when all entries of

b̂k do not change from the entries in b̂k�1. The vector b̂k is an

eigenvector of A.
The eigenvector associated with the
largest magnitude eigenvalue is called
the leading eigenvector.

Now that we have the eigenvector vmax, how do we find the associ-

ated eigenvalue �max? We know that vmax is an eigenvector of A, to

Avmax = �maxvmax. The ith element in Avmax should be equal to

�max times the ith element in vmax. However, since we only found

a numerical approximation to the vmax, the estimate for �max from

each element in vmax might di↵er slightly. To “smooth out” these

variations, compute the eigenvalue using the Rayleigh quotient: To see why the Raleigh quotient
works, consider an eigenvector v for
matrix A with associated eigenvalue
�. Then

v ·Av

v · v
=

v · (�v)

v · v
= �

v · v

v · v
= �

�max =
vmax ·Avmax

vmax · vmax

The dot product in the Rayleigh quotient averages out all of the

small discrepancies between our estimate vmax and the true largest

eigenvector. The Rayleigh quotient provides a numerically stable

estimate of the largest eigenvalue.

Now that we’ve found the first eigenvector, how do we find the

others? If we start the Power Iteration method over again using the

matrix (A � �maxI) instead of A, the algorithm will converge to the

eigenvector associated with the second largest eigenvalue. We can sub-

tract this eigenvalue from A and repeat to find the third eigenvector,

and so on. Proving Power Iteration is able to find subsequent eigen-

vectors is beyond the scope of this course. However, as we’ll see later,

finding only the first eigenvector is su�cient for addressing a number

of interesting problems.

9.2.1 Eigenvalues and Eigenvectors in Matlab

The Matlab function eig computes eigenvalues and eigenvectors.

The statement [V,L] = eig(A) involving an n by n matrix A returns

two n by n matrices:

• Each column of the matrix V is an eigenvector A.

• The matrix L is a diagonal matrix. The ith entry on the diagonal is

the eigenvalue associated with the ith column in V.

Remember that any vector that points in the same direction as an

eigenvector of a matrix is also an eigenvector of that matrix. If the

eigenvectors returned by computational systems like Matlab are not

what you expect, remember that they may be normalized or scaled –

but still point along the same direction.
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9.3 Applications

Eigenvalue and eigenvectors can be used to solve a number of interest-

ing engineering and data science problems.

9.3.1 Solving Systems of ODEs

Consider the linear system of ODEs

dx1

dt
= x1 + 2x2

dx2

dt
= 3x1 + 2x2

with initial conditions x1(0) = 0 and x2(0) = �4. We can write this

system using vectors and matrices as

dx

dt
= Ax, x(0) = x0

where for the example above

x =

 
x1

x2

!
, A =

 
1 2

3 2

!
, x0 =

 
0

�4

!

If we know the eigenvectors v1, . . . ,vn and eigenvalues �1, . . . ,�n for

the matrix A, we can compute the solution as This solution requires the matrix
A be perfect and therefore have a
complete set of eigenvectors.x(t) = c1v1e

�1t + c2v2e
�2t + · · ·+ cnvne

�nt

The scalars c1, . . . , cn are the constants of integration. To find these The function f(t) = e�t is an eigen-
function of the derivative operator,
i.e.

d

dt
f(t) = �e�t = �f(t)

. The solution of a system of linear
ODEs is the product of the eigenvec-
tors of A and the eigenfunctions of
dx
dt .

values, notice what happens to our solution at time t = 0:

x(0) = x0 = c1v1 + c2v2 + · · ·+ cnvn

At t = 0, the right hand side is a decomposition of the initial con-

ditions x0. If we collect the eigenvectors as columns of a matrix

V = (v1v2 . . .vn), we can find the constants c1, . . . , cn by solving

the linear system

V

0

BB@

c1
...

cn

1

CCA = x0

Returning to our original example, the matrix

A =

 
1 2

3 2

!

has eigenvalue/eigenvector pairs

�1 = �1, v1 =

 
�1

1

!
and �2 = 4, v2 =

 
2

3

!
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The integration constants c1 and c2 are defined by the system Vc =

x0, which for this example is
 
�1 2

1 3

! 
c1
c2

!
=

 
0

�4

!

Solving the above equations reveals c1 = �4/5 and c2 = �8/5. The

final solution to this systems of ODEs is

x(t) = �
8

5

 
�1

1

!
e�t

�
4

5

 
2

3

!
e4t

9.3.2 Stability of Linear ODEs

The eigenvalues of A are su�cient to tell if the system dx
dt = Ax

is stable. For a system of linear ODEs to be stable, all eigenvalues

of A must be nonpositive. If the eigenvalues are all negative, each

term e�it goes to zero at long times, so all variables in the system to

go zero. If any of the eigenvalues are zero, the system is still stable

(provided all other eigenvalues are negative), but the system will go to

a constant value civi, where vi is the eigenvector associated with the

zero eigenvalue.

9.3.3 Positive Definite Matrices

A symmetric matrix A is positive definite (p.d.) if xT
Ax > 0 for

all nonzero vectors x. If a matrix A satisfies the slightly relaxed re- Remember that a matrix A is sym-
metric if A = AT.quirement that xT

Ax � 0 for all nonzero x, we say that A is positive

semi-definite (p.s.d.).

Knowing that a matrix is positive (semi-)definite is useful for

quadratic programming problems like the Support Vector Machine

classifier. The quadratic function f(x) = x
T
Qx if and only if the

matrix Q is positive semi-definite. For optimization problems like If Q is positive definite (rather than
just positive semi-definite) then xTQx
is strictly convex.

quadratic programs, the convexity of the objective function has enor-

mous implications. Convex quadratic programs must only have global

optima, making them easy to solve using numerical algorithms.

Determining if a matrix is positive (semi-)definite can be di�cult

unless we use eigenvalues. Any matrix with only positive eigenvalues is

positive definite, and any matrix with only nonnegative eigenvalues is

positive semi-definite. For example, consider the 2⇥ 2 identity matrix

I =

 
1 0

0 1

!

The product xT
Ix is

⇣
x1 x2

⌘ 1 0

0 1

! 
x1

x2

!
= x2

1
+ x2

2
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Since x2
1
+ x2

2
is greater than zero for all nonzero inputs x1 and x2, the

matrix I is positive definite and all its eigenvalues should be positive.

Indeed, the eigenvalues for the identity matrix are �1 = �2 = 1.

As another example, consider the matrix

A =

 
1 �2

�2 1

!

The product xT
Ax = x2

1
� 4x1x2 + x2

2
, which is not always positive.

When x1 = x2 = 1, we see that x2
1
� 4x1x2 + x2

2
= �2. We know that

A is not positive definite (or even positive semi-definite), so A should

have at least one negative eigenvalue. As expected, the eigenvalues for

A are �1 = 3 and �2 = �1.
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