(1) Is the vector \(\begin{pmatrix} -2 \\ 1 \\ -7 \end{pmatrix} \) a unit vector? If not, normalize it.

(2) Are the vectors \(\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \) and \(\begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} \) orthogonal? If not, what is the angle between them?

(3) Let \(A = \begin{pmatrix} 1 & 4 & 2 \\ 7 & 3 & 2 \end{pmatrix} \), \(B = \begin{pmatrix} 2 & -1 \\ -3 & 3 \\ 5 & 2 \end{pmatrix} \), and \(C = \begin{pmatrix} 5 & 2 & -1 \\ 0 & -3 & 2 \\ 1 & -1 & 1 \end{pmatrix} \).

 (a) Compute \(AB \).

 (b) For each of the following, tell if the expression is conformable; if so, indicate the dimensions of the resulting matrix.

 - \(ABC \)
 - \(A^T B^T \)
 - \(B^T A^T \)
 - \(ACB \)
 - \(B^T BC \)
 - \(BB^T C \)

(4) Solve the system of equations using Gaussian elimination.

\[
\begin{align*}
 x_1 - 2x_2 + x_3 &= 3 \\
 x_1 + x_3 &= 2 \\
 x_2 + 3x_3 &= 7
\end{align*}
\]

(5) Find the inverse matrix for the coefficient matrix of the above system. Use it to solve the equations below:

\[
\begin{align*}
 x_1 - 2x_2 + x_3 &= 2 \\
 x_1 + x_3 &= 2 \\
 x_2 + 3x_3 &= 3
\end{align*}
\]
(6) Write a system of equations that approximates the following ODE at five points spanning [0, 2]:

\[3 \cos(x) \frac{du}{dx} = 0, \quad u(2) = 4 \]

Part II: Machine Problem (60 points)

At steady state, the temperature \(T \) in a fluid subject to heat transfer by conduction and convection is governed by the differential equation

\[\alpha \frac{d^2 T}{dx^2} - v_x \frac{dT}{dx} = 0 \]

where \(\alpha \) is the heat diffusivity and \(v_x \) is the \(x \) component of the velocity of the fluid. If \(v_x > 0 \), there is fluid flow in the positive \(x \) direction. If \(v_x < 0 \), there is fluid flow in the negative \(x \) direction.

We want to calculate temperatures on a 1 cm slab with boundary conditions \(T(0 \text{ cm}) = 37^\circ C \) and \(T(1 \text{ cm}) = 25^\circ C \). We know that the heat diffusivity decays exponentially, i.e. \(\alpha = 0.3e^{-x} \text{ cm/s}^2 \). Use a finite difference approximation to solve for the temperature \(T \) at 11 points spanning the domain [0, 1] cm under three conditions:

1. no convection \((v_x = 0 \text{ cm/s}) \)
2. forward convection \((v_x = 0.75 \text{ cm/s}) \)
3. backward convection \((v_x = -0.75 \text{ cm/s}) \).

Plot the temperature profiles for all three conditions on the same plot and comment on the effect of convection. Include your Matlab code with your submission.