Questions from last lecture?
Why study bacteria?

(Why do we need bioengineers to study bacteria?)
“We’re here. We’re in the post-antibiotic era. There are patients for whom we have no therapy, and we are literally in a position of having a patient in a bed who has an infection, something that five years ago even we could have treated, but now we can’t.”

-Arjun Srinivasan, Associate Director at the CDC
A class of bacteria commonly found in the guts of people—and rodents—appears to keep mice safe from food allergies, a study suggests. The same bacteria are among those reduced by antibiotic use in early childhood. The research fits neatly into an emerging paradigm that helps explain a recent alarming increase in food allergies and other conditions, such as obesity and autoimmune disease, and hints at strategies to reverse the trend.”

Couzin-Frankel, Science, 2014
Next Generation: Souped-up Probiotics Pinpoint Cancer

Genetically engineered commensal bacteria help researchers detect cancer metastases in mouse livers.

By Kate Yandell | May 28, 2015

“Researchers at MIT and the University of California, San Diego, have programmed a probiotic Escherichia coli strain to detect cancer metastases in the liver.”

Bacterial cultures

- Liquid cultures
 - Nutrient media
 - Aeration (shaking)
 - Temperature

- Solid cultures
 - Agar with nutrient media
 - Temperature
Plating bacteria from liquid culture

- Bacteria “colonies” arise from an individual cell
- A “lawn” is when individual colonies are not distinguishable
Bacteria growth phases (liquid culture)

- **Lag phase**
- **Exponential (log) phase**
- **Stationary phase**
- **Death phase**

![Graph showing the growth phases of bacteria](image-url)
Working with bacteria

• Bacteria are EVERYWHERE (so are molds, viruses)...and you don’t want them to contaminate your experiments

• We need aseptic technique!
Aseptic technique: minimize contamination

• Decontaminate work area and other surfaces with 70% ethanol
• Do not move over open tubes/containers/plates
• Do not place caps on bench top
• Keep lids on bottles when not in use
Importance of aseptic technique!
Technical point: Starting a bacteria culture

- Streaking a plate from liquid culture or frozen stock ("glycerol stock")
Technical point: Plating bacteria cultures

• Pipette liquid culture directly on to LB agar plate
• Spread culture evenly across plate using cell spreader
• Allow liquid to absorb into plate before turning upside down and placing in the incubator
• This will be demonstrated by the TA in lab
How do we count bacteria?

- Bacteria range in size from less than 0.5μM to ~2μM in length.
- Bacteria are hard to identify at less than 1000X magnification.

Scale bar 10μM, 1152X

How do we count bacteria?

- Counting bacteria on a microscope is equivalent to counting the population of the state of IL by looking at an area the size of Memorial Stadium.
Optical density as a growth measurement

- Most often read at 600nm
- Varies from instrument to instrument (path length, etc)
- RELATIVE measurement

\[OD = c \log_{10} \left(\frac{R}{R_0} \right) \]
Optical density as a growth measurement

The Jensen Lab in BIOE has projects and a startup company designing plate readers...and is recruiting students! 😊

Biotek Synergy HT plate reader
E. coli

- Rod-shaped bacterium 2μM in length
- Found in the lower intestine of warm-blooded mammals
- Widely studied model and a major tool in genetic engineering
- *E. coli* HB101 K-12 is a nonpathogenic (BSL1) strain
Technical Point: Serial Dilutions

- Used to generate accurate dilutions of cell cultures, drugs, etc
- Identify a range (to single cells, toxicity of a drug)
- Importance of good pipetting skills!

Example of 10-fold serial dilution

1. **Sample**: 90 mL diluent + 10 mL sample
2. **Dilution**: 90 mL diluent + 10 mL dilution #1
3. **Mix well**: 10 mL
4. **Dilution**: 90 mL diluent + 10 mL dilution #2
 - ...
Technical Point: Error Propagation

• Each pipette has % error associated with it (larger for larger pipettes)
• Error propagates with each transfer
• You do not need to calculate error propagation in 202 reports, but you should consider the implications as you run experiments!
Bacterial Cell Culture Lab Overview

Optical Density
Relative measurement

Goal: map CFUs/ml to optical density

Colony forming units (CFUs)
Absolute measurement

2-fold dilutions

10-fold dilutions

Plate

10-fold dilutions

1 2 3 4 5 6 7 8 9 10 11 12

A B C D
E F G H
How do we engineer bacteria?

How do we use bacteria to engineer mammalian cells, proteins, etc?
Plasmids

• Small DNA molecule (usually <15kb) that is separate from chromosomal DNA and replicates on its own

• Plasmids can be engineered to code genes of interest that may or may not be modified

• Plasmids are usually found in bacteria but can be present in archaea and eukaryotes too!

http://www.asbmb.org/asbmbtoday/asbmbtoday_article.aspx?id=15152
Plasmid features

- Promoter-governs expression
- ORI-origin of replication
- Gene(s) of interest
- Selectable marker-allow for isolation of cells carrying plasmid (usually antibiotic resistance gene)
- Restriction enzyme sites-recognition sequences for enzymes to cut DNA
- Transcription regulator-gene that controls promoter
- Engineered plasmids are made to prevent bacteria to bacteria transfer—and the spread of antibiotic resistance!
How can we introduce DNA into bacteria?

- Uptake of exogenous DNA into bacteria is called *transformation*

- Note: Uptake of exogenous DNA into mammalian cells is called *transfection*
Competence

• Types of competence
 – Natural competence
 – Induced competence

• Induced competence is a stressed state

Streptococcus pneumoniae
How can we introduce DNA into bacteria?

• Heat shock
 – Rapid temperature change
 – “chemically competent cells”

• Electroporation
 – Electrical field transiently applied to cells
 – “electrocompetent cells”
pGLO plasmid

- ori: origin of replication
- GFP gene
- araC: transcription regulator
- bla: antibiotic resistance
GFP as a tool in molecular biology

- Green fluorescent protein (GFP)
- First isolated from the jellyfish Aequorea victoria
- Exhibits fluorescence when exposed to light in the blue to UV range
- 2008 Nobel prize for the discovery and development of GFP
- More on fluorescence later this semester!

http://www.conncoll.edu/ccacad/zimmer/GFP-ww/GFP-1.htm

Nathan Shaner
Arabinose operon
Arabinose operon in pGLO
Transformation efficiency

Transformation efficiency = \# transformants/DNA
Units CFUs/μg
Variables Affecting Transformation efficiency

• Quality of DNA
• Growth phase of bacteria
• Transformation method
• Plasmid size
Nanodrop Spectrophotometer

• Measures small volumes (2 μL)
• Nucleotides, RNA, ssDNA, and dsDNA all absorb at 260nm
DNA Purity Measured by Nanodrop

- 260/280 ratio
 - Protein and phenol absorb at 280 nm
- 260/230 ratio
 - EDTA, carbohydrates, and phenol absorb at 230 nm
Technical Point: How to “pick” colonies

• Colonies can be “picked” with an inoculation loop or micropipette tip
• Carefully “pick” the colony without removing agar from the plate
• Mix colony into media
• This will be demonstrated in lab.
Reminder: Lab Archives ELNs

- Lab notebooks are important for documenting experiments, protecting IP, etc. and can have legal consequences

These are all the notebooks from my research in grad school!
Reminder: Lab Archives ELNs

• Example
• **Experiment Description:** An *E. coli* HB101 K-12 culture will be diluted and the optical density will be measured using a plate reader. Dilutions of the culture will be plated on LB agar plates and grown overnight to determine the number of cells in the culture.

• **Experiment Purpose:** The purpose of this experiment is to map an optical density value to CFUs/ml for *E. coli* HB101 K-12. This measurement can be used for future experiments.
Announcements

- Special Office Hour: Plotting in Matlab
 - TA Mohammad Zahid
 - Monday, Feb. 1st at 8pm in DCL 1265
- Critical Thinking Questions: A great way to study for the written exam! Some of these EXACT questions or variations of them will be on your exam.
- Quizzes will not be returned. You may view your quiz by appointment with Dr. Jensen
- Stop by my office ANY TIME or email me to make an appointment
- Grades will be posted on Compass
 https://compass2g.illinois.edu
Schedule and logistics

- Lab next week: Bacteria Transformation Week 1
- There will be a quiz at Main Lab only.