1. Consider a linearized model of a physical system that you want to control given by the transfer function

\[P(s) = \frac{s + 1}{s - \beta} \quad \text{where} \quad \beta > 0. \]

Assume that a nominal value of the parameter \(\beta \) is known:

\[\beta_{\text{nom}} = 1 \]

a) Is the nominal model stable?

b) An engineer claims that he/she has the miraculous controller scheme that can make the system behave exactly as she/he wishes. In particular, she/he proposes to use the following open loop scheme where \(K(s) = \frac{s + 1}{s + 1} \):

![Diagram](image)

(i) Check that \(P_{\text{nom}}K = 1 \), hence \(y(t) = r(t) \) which means that, nominally, the output \(y \) follows the command input \(r \) for all time \(t \).

(ii) Is this a sensible solution? Explain

c) Suppose that we knew exactly the parameter \(\beta \) (say, \(\beta = 1 \)). Would you then accept the engineer's proposal? Explain. (disturbances at the input of the plant are possible).

2. Consider the unity feedback loop

![Diagram](image)

where

- \(d_i \) is an input disturbance (to the plant)
- \(d_0 \) is an output disturbance (to the plant)
- \(n \) is a measurement disturbance (ex. sensor noise)
- \(r \) is the command input (to the system)
- \(y \) is the actual output of the system

a. Assuming that the rest of the inputs are zero find the transfer functions (4)

\[H_{yz}(s) = \frac{Y(s)}{X(s)} \]

for \(z = d_i, d_0, r, n. \).
b. Use the fact that the feedback system is linear to check that if all the inputs x act together then

$$Y(s) = H_{yd_i} D_i(s) + H_{yd_0} D_0(s) + H_{yr} R(s) + H_{yn} N(s)$$

c. Form the true error $e = r - y$ and derive a similar expression as in part b, i.e.,

$$E(s) = H_{ed_i} D_i(s) + H_{ed_0} D_0(s) + H_{er} R(s) + H_{en} N(s).$$

Check that $H_{ed_0} = -H_{er}$. Note that e is not the input to the controller K.

d. Assume $d_i, d_0 = 0$.

Typically, we desire to have both $H_{er}(s), H_{en}(s)$ “small” so that the system produces “small” tracking error $E(s)$ in the presence of both input command r and sensor noise n.

i) Check that

$$H_{er}(s) + H_{en}(s) = 1.$$

ii) What does this imply about the realization of our desires?