1. Consider a system \(G \) with input \(u \) and output \(y \).

 a) Suppose that \(G \) is a time-delay, i.e., the output \(y \) is exactly the input \(u \) but delayed by \(T \) seconds, where \(T \) is constant.
 Is this a linear system?
 Is \(G \) a time invariant system?

 b) Suppose \(G \) is given by the input-output relation \(y = mu + b \) where \(m, b \) constants.
 Is this a linear system?

2. Verify the following properties of the Laplace Xform

 a. \(\mathcal{L}(f(t-T)) = e^{-sT} \mathcal{L}(f(t)) = e^{-sT}F(s) \)

 b. \(\mathcal{L}(e^{-at}f(t)) = F(s+a) \)

3. a) Given that

 \[F(s) = \mathcal{L}(f(t)) = \frac{w}{s^2 + w^2}, \quad f(t) = \begin{cases} \sin wt, & t \geq 0 \\ 0 & t < 0 \end{cases} \]

 show that

 \[G(s) = \mathcal{L}(g(t)) = \frac{s}{s^2 + w^2}, \quad g(t) = \begin{cases} \cos wt, & t \geq 0 \\ 0 & t < 0 \end{cases} \]

 by using a suitable property of Laplace transform.

 c) Use (if applicable) the initial value and the final value theorem to obtain

 \[f(0^+), \quad f(\infty), \quad g(0^+), \quad g(\infty). \]

4. Find \(\mathcal{L}(f(t)) \) for the following \(f \) without direct computation. Rely strictly on the properties of the transform and assume only that \(\mathcal{L}(1(t)) = 1/s \) is known (i.e., the Laplace transform of the step function).

 ![Plot](image)

 Hint: Decompose appropriately \(f \).