DO NOT START UNTIL INSTRUCTED BY EXAMINER

Exam Policy:

- open book
- open notes
- calculators allowed; no cell phones

Some Remarks:

- There are 2 problems. Read all questions and point values. Max score is 100
- Write your name on every sheet of paper you hand in.
- Best of luck
PROBLEM 1 (60pts)

Consider the unity feedback system where

\[P(s) = \frac{1}{(s+1)(s-2)}. \]

1. Suppose we use a proportional controller \(K(s) = k, \ k \geq 0 \). Is it possible to achieve closed loop stability for some \(k \)?

2. If \(K(s) = k(s + 2)/(s + 5), \ k > 0 \), provide the maximum range of \(k > 0 \) to stabilize the closed loop.

3. Can all closed loop poles be made real for such a stabilizing \(K(s) \)?

4. What will be the real parts of the closed loop poles as \(k \to \infty \)?

5. What will be the steady state error \(e \) to a step input \(r \) as \(k \to \infty \)?

6. Suppose we use \(K(s) = k(s+1) \). Can we stabilize the closed loop for some \(k \)? Explain.

\[e = r - y \]

\[\begin{align*}
1. \quad & \varphi(s) = (s+1)(s-2)+k = s^2 - s - 2k + k \\
& \text{not all roots have same sign} \Rightarrow \text{impossible}
\end{align*} \]

\[\begin{align*}
2. \quad & \varphi(s) = (s+1)(s-2)(s+5) + k(s+2) \\
& = s^3 + 4s^2 + (k-7)s + 2k - 10 \\
& \Rightarrow k > 7 \text{, } 2k > 10 , \ 4(k-7) > 2k - 10 \\
& k \geq 7, \ k \geq 5, \ k \geq 9 \Rightarrow (k \geq 9)
\end{align*} \]

\[\begin{align*}
3. \quad & \alpha = -\frac{-\gamma + 2}{2} = -1 \\
& \text{check b.p.} \\
& D'N - DN' = 0 \\
& \text{If so in RHP} \Rightarrow \text{impossible}
\end{align*} \]
PROBLEM 2 (40 pts)

1. True or False: A type-1 system always produces zero steady state errors to step disturbances at the input of the plant. F

2. True or False: A type-k system produces zero steady state errors to reference inputs of the form $r(s) = 1/s^k$ and its m-th time derivatives, for $m = 1, \ldots, k$. T

3. True or False: We can always stabilize a system with PID controllers. F

4. Consider each of the following diagrams below. Next to each diagram mark clearly in the circles: (T) if the diagram can possibly represent a root locus diagram; (F) if the diagram cannot possibly be a root locus diagram. (note that we consider only the standard root locus diagram, i.e., $k \geq 0$.)

- Diagram 1: T
- Diagram 2: F
- Diagram 3: F
- Diagram 4: T