1. (10 points) For Byzantine consensus, in addition to the usual termination and agreement condition, suppose that we require the following validity condition to hold: the decision (i.e., output) must equal the input of a non-faulty process.

Let n be the number of processes. Let the input of each process be an integer in $[0,m-1]$. Thus, the input of each process takes one of the m possible values.

To be able to achieve Byzantine consensus with the above validity, agreement and termination properties, in presence of up to f Byzantine faulty processes, prove that $n \geq f \cdot \max(3,m) + 1$ is necessary and sufficient.

2. (5 points) The above problem assumes (without stating explicitly) that the communication network consists of a point-to-point links. In such a network, when process p_1 sends a message to process p_2, no other non-faulty process will hear (i.e., receive) that message.

Suppose that a system instead uses a broadcast channel to connect all the processes. Suppose that when a process sends a message on the broadcast channel, all the processes receive the message.

For this system, state the number of processes necessary and sufficient to achieve Byzantine consensus.

3. (5 points) For a system with the broadcast channel, assume that in each round, each process may send one message on the broadcast channel. To be able to tolerate up to f crash failures, state a tight bound on the number of rounds necessary for achieving consensus. In this case, the validity condition requires that the decision should equal the input of one of the processes.