
CS 425 / ECE 428 
Distributed Systems

Fall 2017
Indranil Gupta (Indy)

Oct 24, 2017
Lecture 16-B: Paxos

All slides © IG



Formal problem statement

•N processes

•Each process p has 
input variable xp : initially either 0 or 1

output variable yp : initially b (can be changed only once)

•Consensus problem: design a protocol so that at the 
end, either:

1. All processes set their output variables to 0 (all-0’s)

2. Or All processes set their output variables to 1 (all-1’s)

What is Consensus?

2



• Every process contributes a value
• Goal is to have all processes decide same (some) value

– Decision once made can’t be changed

• There might be other constraints 
– Validity = if everyone proposes same value, then that’s 

what’s decided

– Integrity = decided value must have been proposed by 
some process

– Non-triviality = there is at least one initial system state 
that leads to each of the all-0’s or all-1’s outcomes

What is Consensus? (2)

3



• Many problems in distributed systems are equivalent to (or 
harder than) consensus!

– Perfect Failure Detection
– Leader election (select exactly one leader, and every alive 

process knows about it)
– Agreement (harder than consensus)

• So consensus is a very important problem, and solving it 
would be really useful!

• Consensus is 
– Possible to solve in synchronous systems
– Impossible to solve in asynchronous systems

Why is it Important?

4



• Yes, we can!

• (Whut?)

Can’t we just solve Consensus?

5



•Paxos algorithm
– Most popular “consensus-solving” algorithm
– Does not solve consensus problem (which 

would be impossible, because we already 
proved that)

– But provides safety and eventual liveness
– A lot of systems use it

• Zookeeper (Yahoo!), Google Chubby, and 
many other companies

•Paxos invented by? (take a guess)

Yes we Can!

6



• Paxos invented by Leslie Lamport

• Paxos provides safety and eventual liveness
– Safety: Consensus is not violated
– Eventual Liveness: If things go well sometime in the future 

(messages, failures, etc.), there is a good chance consensus 
will be reached. But there is no guarantee.

• FLP result still applies: Paxos is not guaranteed to reach 
Consensus (ever, or within any bounded time)

Yes we Can!

7



• Paxos has rounds; each round has a unique ballot id
• Rounds are asynchronous

– Time synchronization not required
– If you’re in round j and hear a message from round j+1, abort everything and 

move over to round j+1
– Use timeouts; may be pessimistic

• Each round itself broken into phases (which are also asynchronous)
– Phase 1: A leader is elected (Election)
– Phase 2: Leader proposes a value, processes ack (Bill)
– Phase 3: Leader multicasts final value (Law)

Political Science 101, i.e., Paxos Groked

8



• Potential leader chooses a unique ballot id, higher than seen anything so far
• Sends to all processes
• Processes wait, respond once to highest ballot id

– If potential leader sees a higher ballot id, it can’t be a leader
– Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case
– Processes also log received ballot ID on disk

• If a process has in a previous round decided on a value v’, it includes value v’ in its response
• If majority (i.e., quorum) respond OK then you are the leader

– If no one has majority, start new round 
• (If things go right) A round cannot have two leaders (why?)

Please elect me! OK!

Phase 1 – election

9



• Leader sends proposed value v to all 
– use v=v’ if some process already decided in a previous 

round and sent you its decided value v’
– If multiple such v’ received, use latest one

• Recipient logs on disk; responds OK

Please elect me! OK!
Value v ok?

OK!

Phase 2 – Proposal (Bill)

10



• If leader hears a majority of OKs, it lets everyone know of the 
decision

• Recipients receive decision, log it on disk

Please elect me! OK!
Value v ok?

OK!
v!

Phase 3 – Decision (Law)

11



• That is, when is consensus reached in the system

Please elect me! OK!
Value v ok?

OK!
v!

Which is the point of No-Return?

12



• If/when a majority of processes hear proposed value and 
accept it (i.e., are about to/have respond(ed) with an OK!)

• Processes may not know it yet, but a decision has been made 
for the group
– Even leader does not know it yet

• What if leader fails after that?
– Keep having rounds until some round completes

Please elect me! OK!
Value v ok?

OK!
v!

Which is the point of No-Return?

13



• If some round has a majority (i.e., quorum) hearing proposed value v’
and accepting it, then subsequently at each round either: 1) the round 
chooses v’ as decision or 2) the round fails

• Proof: 
– Potential leader waits for majority of OKs in Phase 1
– At least one will contain v’ (because two majorities or quorums always 

intersect)
– It will choose to send out v’ in Phase 2

• Success requires a majority, and any two majority sets intersect

Please elect me! OK!
Value v ok?

OK!
v!

Safety

14



• Process fails
– Majority does not include it
– When process restarts, it uses log to retrieve a past decision (if any) and past-seen ballot ids. Tries to know of 

past decisions.
• Leader fails

– Start another round
• Messages dropped

– If too flaky, just start another round
• Note that anyone can start a round any time
• Protocol may never end – tough luck, buddy!

– Impossibility result not violated
– If things go well sometime in the future, consensus reached

Please elect me! OK!
Value v ok?

OK!
v!

What could go Wrong?

15



• A lot more! 

• This is a highly simplified view of Paxos. 
• See Lamport’s original paper: 

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-
simple.pdf

Please elect me! OK!
Value v ok?

OK!
v!

What could go Wrong?

16



• Paxos protocol: widely used implementation of a safe, 
eventually-live consensus protocol for asynchronous systems

– Paxos (or variants) used in Apache Zookeeper, Google’s Chubby 
system, Active Disk Paxos, and many other cloud computing 
systems

Summary

17


