

Autonomous Quadcopter

By

Andrew Martin, Baobao Lu, Cindy Lee

Group 37

TA: Katherine O'Kane

December 9, 2015

Abstract

The goal of this project was to design an autonomous quadcopter that is capable of balancing

on its own and flying from an origin to a goal using preset paths and directions. The quadcopter

implemented PID control, an ultrasonic sensor to detect obstacles, and an autonomous flight

algorithm. This final report includes a general introduction of the project and discusses the

components and subsystems implemented in this project. It examines the design goals, the costs of

the project, and the ethical and practical implications of this project.

ii

Table of Contents
1.1 Purpose .. 1

1.1.1 Defining 'Autonomous' ... 1

1.2 Block Diagram... 2

2 Design .. 3

2.1 Design Procedure – Block Diagram Components ... 3

2.1.1 LiPo Battery [Turnigy 3 cell 3300mAh] .. 3

2.1.2 Electronic Speed Controllers (ESC) [F-20A Fire Red Series Simonk] 3

2.1.3 Motors [HT-450 Brushless Multicore] ... 3

2.1.4 Flight controller [Copter Controller 3D] .. 3

2.1.5 ARM Microcontroller [LPC1114, 32-bit ARM Cortex] ... 4

2.1.6 Ultrasonic Sensor [HC-SR04] ... 4

2.2 Design Details ... 5

2.2.1 Power supply chain (LiPo Battery, ESCs, Motors) ... 5

2.2.2 Flight controller .. 6

2.2.3 ARM Microcontroller ... 8

2.2.4 Ultrasonic Sensor .. 9

3. Verification ... 11

3.1 Power Chain Verification ... 11

3.2 Flight Controller Verification ... 11

3.3 ARM Microcontroller Verification ... 11

3.4 Ultrasonic Sensor Verification ... 12

4. Costs ... 13

4.1 Labor ... 13

4.2 Parts .. 13

4.3 Grand Total ... 14

5. Conclusion .. 15

5.1 Successes and Uncertainties ... 15

5.2 Ethical Considerations ... 15

5.3 Future Work .. 17

References... 18

Appendix .. 19

Appendix A: Requirement and Verification Table .. 19

Appendix B: Large Schematics .. 21

Appendix C: Acquired Ultrasonic Data .. 24

Appendix D: ARM Microcontroller code ... 26

iii

1

1. Introduction

1.1 Purpose

Quadcopters are a popular project for hobbyists due to their relative low complexity and

cost to build. However, due to their growing popularity, there is also an increase in number of new

quadcopter builders and flyers. Thus, accidents are more likely to occur due to their inexperience in

handling or controlling a quadcopter during the building phase or the test-flying phase. The FAA has

imposed strict laws on quadcopter flight in an effort to reduce quadcopter accidents.[1]

Our intention is to create a quadcopter that can fly independent of any user control from

the ground, on a low budget. Autonomous flight of quadcopters is a difficult and expensive process,

usually involving the interaction of GPS, high quality accelerometers/gyroscopes/sensors, and the

control of an expensive flight controller. We believe we can create an autonomous flight system

that can be preprogrammed to follow a path and carry out collision avoidance, but without using

any of these expensive features. To accomplish autonomous flight, we intend to mimic the signals

of a transceiver/receiver system by using a simple ARM microcontroller. By preprograming a set of

flight signals onto the ARM microcontroller and passing them to a cheap flight controller, we can

preset a simple flight routine. To accomplish collision avoidance, we intend to integrate onto the

ARM microcontroller a simple ultrasonic sensor. If the ultrasonic sensor detects an object close to

the quadcopter, the ARM microcontroller modifies the flight path to keep the quadcopter safe from

collision. This report will provide a general outline of the system and will discuss in detail the results

of our team in attempting to meet these goals.

1.1.1 Defining 'Autonomous'

 The question of whether the aforementioned design constitutes an 'autonomous'

quadcopter has been discussed and debated throughout the course of this project. Merriam-

Webster defines autonomous as "existing or acting separately from other things or people: having

the power or right to govern itself" [http://www.merriam-webster.com/dictionary/autonomous].

We feel that this definition describes our quadcopter build. Autonomous systems "exist and act", to

the extent of their ability to be aware of their surroundings. We have pushed the boundaries of

how the quadcopter exists and acts with the limited usable information we could acquire from the

ultrasonic sensor.

Criticisms that the quadcopter does not follow a spatial path exactly as described in the

code fall outside the definition of autonomy as it pertains to this project. The quadcopter has the

power to act on a set of instructions, and executes them to the best of its ability. Further, we

believe the question of precision in flight is ambiguous, and since it was directly addressed in our

requirements and verification, we feel it does not invalidate our claim that the quadcopter is

autonomous. Criticisms that the quadcopter "flies blind" are reasonable but simplistic, as the

quadcopter has the capability to react to its surroundings (decrease throttle and disarm), even if

the capability is extremely limited in the given setup. These points will be addressed further in the

ethical considerations section (5.3) of the report.

2

1.2 Block Diagram

Figure 1 outlines a top level design of the quadcopter.

Figure 1: Block Diagram of quadcopter

3

2 Design

2.1 Design Procedure – Block Diagram Components

2.1.1 LiPo Battery [Turnigy 3 cell 3300mAh]
This is the source of power for entire quadcopter. The 11.1V battery routes power directly

to the ESCs. The ESCs divert power to the motors, flight controller, and ARM microcontroller.

2.1.2 Electronic Speed Controllers (ESC) [F-20A Fire Red Series Simonk]
These controllers supply power to the motors by translating signals from the flight

controller to electrical energy. Inputs are control signals from the flight controller and 11.1-12.4V

from the LiPo Battery. Outputs include a 5V battery eliminator circuit (BEC) power supply that can

power a flight controller or ARM microcontroller, and up to 220W of power for the motors. They

are rated to pull up to 20A of power from the LiPo Battery. The amount of electrical energy

supplied to the motors is based on the input signals from the flight controller.

2.1.3 Motors [HT-450 Brushless Multicore]
The motors receive 220W from electronic speed controllers (ESCs) and are used to drive

the propellers. Speed tuning of the motors is achieved through PID tuning of the ESCs via

CleanFlight software.

2.1.4 Flight controller [Copter Controller 3D]
The CC3D flight controller enables aircraft stabilization and flight. The CC3D board is a

quadcopter flight controller that normally runs the OpenPilot firmware. This firmware takes inputs

from the receiver and the onboard gyroscope and calculates the optimal motor speeds to produce

the desired input from the quadcopter operator. It is powered by the 5V supply source from one of

the ESCs and controls the ESC's transmission of power to the motors. It can be integrated with any

airframe and is configured and monitored using a variant of OpenPilot software called CleanFlight.

The CC3D also has an integrated PID control system that can be tuned in the CleanFlight software.

2.1.4.1 PID Control

We chose PID control because it is relatively simpler in complexity than other types of

control systems. Additionally, CleanFlight integrates PID tuning, which makes PID tuning easy to

control and directly implement.

The basics of PID control can first be shown in the following diagram by Oscar Liang.[2]

4

Figure 2: PID control outline for quadcopter[2]

When the feedback control signal is linearly proportional to the system error, it is called the

proportional feedback, which is the P term in the diagram. The I term is the proportional plus

integral term to get the automatic reset result. The last term D is derivative control, which has an

important effect of giving a sharp response to suddenly changing signals.

PID, overall called the proportional integral derivative is a closed loop control system that is

useful in getting the actual result of quadcopter control closer to the desired result by adjusting the

input the quadcopter system. Many quadcopters use PID controller to achieve stability.

2.1.5 ARM Microcontroller [LPC1114, 32-bit ARM Cortex]
This is a replacement for the traditional receiver, which is normally used in conjunction

with a transmitter to supply throttle and direction controls to the quadcopter flight controller. In a

traditional setup, the receiver produces 3.3V PWM pulses that reflect the inputs of the transmitter

it is paired with. Our ARM microcontroller replicates these 3.3 PWM pulses and, like the receiver,

sends them to the flight controller. The ARM microcontroller is a development platform that takes

input from ultrasonic sensor and charts an autonomous flight path by replicating receiver signals. It

alters course by modifying the PWM pulses it sends if input from sensors indicates a nearby object

in the path of the quadcopter.

2.1.6 Ultrasonic Sensor [HC-SR04]
The HC-SR04 sensor is in charge of detecting obstacles and outputting distance data to the

ARM microcontroller. It is triggered by a pulse input from the ARM microcontroller. It has ranging

accuracy of up to 3mm. The sensor has wire connections that consist of 5V supply, ground, trigger

pulse input and echo pulse output. The working current is 15mA, and the working frequency is

40Hz. Figure 3 outlines the expected TTL operation of the trigger and echo pins of the Ultrasonic

sensor.

5

Figure 3: TTL Timing Diagram for HC-SR04 Ultrasonic Sensor[3]

2.1.6.1 Ultrasonic Sensor Power Supply
Because the echo output of the ultrasonic sensor is sensitive to the quality of the input 5v

power supply it receives, a dedicated power regulator was designed to ensure quality output from

the sensor. This hardware component uses a simple LM7805 power regulator to regulate an input

11.1 volt source from the LiPo battery. It features a female pin header used to connect both the

outside voltage source input and the ultrasonic sensor output. It also features pads for connecting

the trigger and echo pins to the ARM microcontroller circuitry.

2.2 Design Details

2.2.1 Power supply chain (LiPo Battery, ESCs, Motors)
In order to ensure the battery was powerful enough to fly the quadcopter, gravitational

physics calculations were made to determine the power required to make the quadcopter hover:

 (1)

 (2)

 (3)

 (4)

 (5)

It can be shown that the LiPo battery, which is intended to operate from 11.1-12.4 volts,

can support a draw of at least 80A to power all four motors. Thus, the power chain can produce
11.1V * 80A = 888 J/sec, which is more than sufficient to make the quadcopter hover and fly. This
value is corroborated by the motors, which are each rated for 220W of power, which when

6

combined suggests that the quadcopter is rated to use 880 W.

If it is assumed that each motor draws 20A and that the additional components on the

quadcopter (ARM microprocessor, CC3D, ultrasonic sensor) require one Amp to power overall, we

can estimate a safe maximum flight time for the quadcopter. It can be shown that for a 3300mAh

battery:

𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒 (min) = 80% 𝑟𝑢𝑙𝑒 ∗
𝑚𝐴ℎ

1000
∗

1

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑎𝑤∗𝑓𝑙𝑦𝑖𝑛𝑔 𝑙𝑜𝑎𝑑
∗

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

1 ℎ𝑜𝑢𝑟
 (6)

 = 80% ∗
3300

1000
∗

1

(4∗20+1)∗30%
∗

60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

1 ℎ𝑜𝑢𝑟
= 8.1 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 (7)

Figure 5: Estimation of total flight time of quadcopter

Here the 80% rule is a safeguard to prevent overtaxing the battery, and the flying load is

the estimated percent of maximum capacity carried by the quadcopter during flight.[4] Thus the

quadcopter can be safely run for up to 8 minutes before the battery needs to be recharged.

2.2.2 Flight controller

The CC3D is a hardware flight controller. The board runs on OpenPilot firmware, and it is

configured to run CleanFlight software. The CC3D is connected to the computer using USB port and

CleanFlight is run on the computer in order to monitor the aircraft. The software is used for PID

tuning, calibration, and for acquiring controller values. Signals from the CC3D flight controller are

then sent and translated by the ESC and are used to power the motors. Since the ARM

microcontroller acts as a receiver, the firmware in the CC3D takes inputs from the ARM

microcontroller and the onboard gyroscope and calculates the optimal motor speeds to produce

the desired input from the quadcopter operator. The ARM microcontroller replicates the 3.3 PWM

pulses and, like the receiver, sends them to the flight controller. The ARM is connected to the

receiver ports of the CC3D flight controller. The length of the PWM pulse specifies the output and

throttle positions, which are interpreted by the CC3D as transceiver/receiver controls. CleanFlight

can take controller values from 1000 to 2000, but the user is able to set different limits.

2.2.2.1 PID Control
The effects of PID tuning in CleanFlight can be visualized when the propellers are installed

on the quadcopter with the motors rotating. Since the position and the resistivity of change of

direction could be detected when we change the values of the PID terms. From further research,

we found out that increasing the value of P would stabilize the quadcopter, and therefore creating

a strong resistive force when someone attempts to move the motor. Decreasing the value of P on

the other hand, will give the quadcopter less resistive force when one attempts to stop or move the

motor. Increasing the value of I, could increase the ability of the quadcopter to hold overall

position, and thereby reducing drift due to unbalanced forces. Decreasing I, could improve reaction

to changes, but also make the quadcopter prone to drifting in random directions. Increasing the

value of D, will add damping on the quadcopter, and make it react slower to fast changes.

7

Decreasing the value of D, provides less damping to the quadcopter, and thereby results in the

quadcopter reacting faster to changes.

The default PID values are given in Figure 4 below:

Figure 4: PID values for typical quadcopter setup[5]

In order to detect noticeable behavior changes in the motor, the values needed to be
changed drastically from the default values. For example, when changing P, if you start from the
given value, which is 4, the motor oscillations are not visible at all, and if you change it to 8, the
effect is still barely noticeable, if you keep increasing the value to 12, oscillations begin to become
audible in the motors. If P is increased to 17, oscillations are visible. So in order to detect visible
changes in the motor due to PID parameters, one must greatly increase the values.

The table below is obtained after numerous tests in order to get the most stable flight. We
first started with the default values and through trial and error incremented or decremented the
constants in order to find the most optimal values.

Table 1: Final PID Values for Quadcopter

Name Proportional Integral Derivative

Roll 4.0 0.06 23

Pitch 4.0 0.06 23

Yaw 8.5 0.045 0

8

2.2.3 ARM Microcontroller

Figure 5 below demonstrates the train of pulses and individual lengths of pulses generated

by the Transceiver/Receiver, which the ARM attempts to emulate. Because the

Transceiver/Receiver system can only produce pulses with widths between 1.12 ms and 1.92 ms,

The ARM microprocessor is only required to generate PWM pulses between these two widths. The

20ms split between pulses remains constant regardless of the width of the PWM pulse.

Figure 5: Clockwise from top left: 1.5ms pulse with 20ms split; Minimum length pulse, 1.12 ms;

Maximum length pulse, 1.92ms; Medium length pulse, 1.5ms

To generate PWM signals at selected GPIOn pins[6], the frequency and the pulse width of a

PWM signal is stored as data. Both are stored in increments of 10 microseconds for simplicity. The

timer is also set to increment at each 10 microseconds. Then at time, t = 0, the signal is set to HIGH

(or 3.3V) by ORing the GPIOn pin with a one. The signal stays HIGH until t equals the pulse width

where the signal is masked by a zero bit, resulting in a LOW (or 0 V). In our case, the frequency is 50

Hz (equivalently stored as 2000*10 microseconds) and the pulse width could go between 1.0 ms to

9

2.0 ms (equivalently stored as 100*10 microseconds and 200*10 microseconds). The value of time t

is also bounded by the frequency so it has values from 0 to 2000 so t resets to 0 when t reaches

2000. For example, we have pulse width of 1.55 ms (156*10 microseconds) at GPIO5 pin. Then the

PWM signal would be processed as follows:

t = 0, GPIO |= (1 << 5), (<< 5, stands for shifting the bit by 5)

t < 155, no change

t = 155, GPIO &= ~(1 << 5); (~ stands for inverting the bits)

t > 155, no change

2.2.4 Ultrasonic Sensor

The ultrasonic sensor’s trigger pin should output an ultrasonic wave that travels at a speed

of sound.[3] Hence; the distance should be related to the wave’s duration of travel as follows:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ×𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑

2
 (8)

To verify if the ultrasonic sensor Echo pin outputs a high at the right duration after the

Trigger Pin sends a wave, the ultrasonic sensor was connected to a RedBoard programmed with

Arduino as shown in Figure 6. A solid object was placed in front of the ultrasonic sensor at certain

distances and was detected by the ultrasonic pulse. Code was put into the RedBoard to obtain the

duration between trigger and echo that correspond to certain distances. Results of these tests are

shown in Appendix C.

From the results obtained it can be seen that the average measured duration has a small

percentage error that gets no larger than 4% when the distance is 7 cm and above. It has a high

percentage error when tested using 2cm, 4cm and 6cm and for values past 75cm.

In addition to the values between 2cm-75cm tested in Appendix C, the ultrasonic sensor

was pointed at a wall more than 75cm away. The ultrasonic sensor failed to detect the distance

accurately; the data it outputted suggested the wall was at a distance around 50cm. Thus in order

to ensure the sensor produced reasonable values, code for the quadcopter only implemented

detection of objects at distances less than 50cm from the sensor.

During testing, it was noted that the ultrasonic sensor requires a steady 5V at the VCC input

to produce reliable data. Because the RedBoard was only connected to the computer through USB,

the RedBoard put out slightly less than 5V to power the sensor, which caused irregularities in

testing. While we were able to use a benchtop power supply to hold the ultrasonic sensor voltage

stable to obtain reliable data, it was decided that a standalone power supply would be necessary

on the quadcopter. To that end, an ultrasonic power supply was fabricated to provide the 5V

needed by the sensor. Ultimately, though, power from the battery eliminator circuit (BEC) of one of

the four ESCs was used instead. Lastly, the code for operating the sensor on the RedBoard was

ported to the ARM microcontroller and integrated into the flight control code.

10

Figure 6: Circuit connecting Ultrasonic Sensor to RedBoard

2.2.4.1 Ultrasonic Sensor Power Supply

Although fully realized, the power supply of the ultrasonic sensor was not integrated into

the final quadcopter build. An LM7805 was used as the primary component for the power supply. [7]

The voltage regulator is rated to operate between 7-25V, so the introduction of an 11.1V power

supply should have fallen within the bounds of a reasonable power source. However, the datasheet

for the regulator indicates that for the given voltage and current schema, output voltage could

range from 4.8V to 5.2V, which was observed in our experimental setup. Thus, the voltage

regulator’s variability in output made it insufficient for use in this application. Further diagrams of

the board schematics for this part can be found in Appendix B.

Figure 7: Hardware design schematic.

11

3. Verification

3.1 Power Chain Verification

In order to verify the correct power outputs of the LiPo Battery and ESCs, A multimeter was

used to check voltages against those specified in the requirements and verification table (Appendix

A). Although it was possible to verify the synchronous startup of motors after flight controller

tuning, finding the maximum speed of each of the motors was not accomplished. No reliable

method of measuring motor spin speeds was conceived or executed. Ultimately, all voltage and

current related requirements were verified on the quadcopter through analysis with a multimeter.

3.2 Flight Controller Verification

In order to verify the function of the flight controller, the motors and accelerometer were

calibrated on the flight controller. To calibrate the motors, the CC3D must be connected to the

computer with CleanFlight running. Then under the Motor section of CleanFlight, the tab must be

set to a maximum value for motors. Then the battery must be powered on. Afterwards, the motor

tab needs to be put down to the minimum value. Then the battery and flight controller can be

disconnected. The ESCs use the maximum and minimum values from CleanFlight to determine the

proper input values for which the motors should be turned on.

To calibrate the accelerometer, the CC3D is simply set on a flat surface while connected to

CleanFlight and the button to calibrate the CC3D is pressed. The CC3D consistently calibrated to

within ±0.5° in all accelerometer directions on a perfectly flat surface.

3.3 ARM Microcontroller Verification
In order to ensure we could first program with the ARM microcontroller, it was necessary

to fabricate a simple circuit utilizing the ARM microcontroller on a breadboard and attempt to load

simple programs on it. In order to confirm that the ARM microcontroller worked, the experimental

setup depicted in Figure X was constructed. This experimental setup schematic is documented in

Appendix C. The first ARM microcontroller tested was shown to output about 1.1 volts on a line

that should have output 3.3 volts. Further, the µVision software designed for programming the

ARM microcontroller could not successfully program the ARM microcontroller. After several days of

study, it was determined the microprocessor being used was broken. The ARM microcontroller was

switched out and was found to program correctly, and output the correct 3.3 volts on the

appropriate pin. The program was tested again after the ARM microcontroller was transferred to

the completed PCB and was found to perform the same as on the breadboard.

12

Figure 8: Image of the quadcopter processor (lower left) powering an LED. The JTAG

programmer (lower right) is used to translate and send code from the µVision software to the ARM

microcontroller.

3.4 Ultrasonic Sensor Verification

As part of testing, it was important to determine whether it was possible to receive correct output
from the HC-SR04 sensor given ideal input and power conditions from a benchtop setting. These
considerations included powering the sensor at Vcc of 5 volts and sending a 10uS TTL pulse to the
trig pin. The following settings were used to produce a 10uS TTL pulse from the signal generator:

 Freq: 20kHz
 Amplitude: 1.25 Vpp
 Waveform: Square
 Offset: 1.25 Volts
 Duty Cycle: 25%
 Burst: On
 Trigger: Single

By implementing these settings, a 10uS TTL pulse was produced that can be triggered by pressing
the trigger button on the signal generator.

The resultant output for two scenarios can be seen in Appendix C. The green line in both
cases indicates the length of the trigger input, while the yellow line indicates the output from the
echo signal. In the first graph, the object being detected is placed close to the sensor, about 1 ft.
The second graph shows the results of putting an object roughly 6 inches further away. The first
graph shows an echo result, which is shorter in length than the second signal. This correctly
indicates that the echo takes less time to travel in the first case versus the second case, because the
object is closer in the first case. Further tolerance analysis conducted to test the limits of the sensor
can be found in Appendix C.

13

4. Costs

4.1 Labor

Table 2: Labor

Name Hourly

Rate

Total Hours

Invested

Total Labor = Hourly Rate x 2.5 x Total

Hours Invested

Andrew Martin 40.00 100 10,000.00

Baobao Lu 40.00 100 10,000.00

Cindy Xin Ting Lee 40.00 100 10,000.00

 Total $30,000.00

4.2 Parts

Table 3: Parts

Parts Unit Cost (USD) Quantity Total

Flip Sport Quadcopter Frame 65.00 1 65.00

HT-450 Motor - House 15.00 4 60.00

F-20A Fire Red Series Simonk-(RapidEsc) 8.00 8 64.00

HQ 9X4.5 MM Fiberglass Composite Propeller 3.98 4 15.92

Open Pilot CC3D 15.53 1 15.53

Turnigy 3300mAh 3S 30C Lipo Pack 25.80 1 25.80

IMax B6 Digital RC Lipo NiMh Battery Charger 22.72 1 22.72

Turnigy TGY-i6 Transmitter 49.00 1 49.00

Turnigy TGY-i6 6CH Receiver Bundled with Transmitter 1 0.00

Breadboard PCB 8.50 1 8.50

ARM LPC1114FN28 5.28 1 5.28

USB MINIJTAG Debugger/Emulator 13.00 1 13.00

UA78MC-UIC 3.3V Voltage Regulator 1.00 1 1.00

R4.7/25 47uF Capacitor 0.15 1 0.15

14

COM-08375 0.1uF Capacitor 0.25 2 0.50

COM-00533 3mm Red LED 0.35 2 0.70`

CF1/2W472JRC 4.7k resistor 0.09 2 0.18

HC-SR04 Ranging Distance Sensor 10.00 1 10.00

 Total $358.28

4.3 Grand Total

Table 4: Grand Total

Labor $30,000.00

Parts $358.28

Total $30,358.28

15

5. Conclusion

5.1 Successes and Uncertainties
The quadcopter was able to follow autonomous paths as promised. It was demonstrated

that it was possible to acquire PWM data normally sent by a transceiver and receiver. It has been

shown that it was possible to duplicate this PWM data on an ARM microcontroller and deliver it to

the CC3D. It was shown that the CC3D could receive control data for thrust, pitch, roll, and yaw and

use the data appropriately to navigate.

The ultrasonic sensor was also successfully utilized in the design. It was shown that the

quadcopter ESCs could provide stable 5 volts and that the ARM microcontroller could trigger the

operation of the sensor. The ARM microcontroller successfully measured inputs from the

ultrasonic sensor and could determine if objects were in the path of the sensor. The ARM

microcontroller was shown to lower the throttle and ultimately shown to disarm the quadcopter if

an object was placed in the path of the sensor.

However, some uncertainties existed in the final design. Despite the fact that the ARM

microcontroller could pilot the quadcopter autonomously, it was not possible to assess the location

of the quadcopter in its flight path accurately. Drift was a significant contribution to deviations in

the planned path, and made it difficult to determine the final position of the quadcopter.

Uncertainties also existed in the ultrasonic sensor. The sensor frequently was shown to

produce false positives of object detection when put in operation. To counteract these false

positives, a program was implemented to take many samples and execute a disarm only if a certain

threshold of positives were met. However, the ultrasonic sensor still failed to detect objects

correctly in these cases, and was considered unreliable. Additionally, it was not shown that the

ultrasonic sensor could be used in an in-flight autonomous situation. It remains to be seen as to

whether autonomous flight and ultrasonic object detection can be integrated together into a final

product.s

5.2 Ethical Considerations

IEEE Code of Ethics[8] Relevance in Design

"1. to accept responsibility in making

decisions consistent with the safety,

health, and welfare of the public, and to

disclose promptly factors that might

endanger the public or the environment"

The purpose of this project is to produce a design that will

increase the safety of quadcopters and decrease the risk

of those flying them.

"2. to avoid real or perceived conflicts of

interest whenever possible, and to

disclose them to affected parties when

they do exist"

The university has strict rules about the operation of

quadcopters on university property. All flight-testing was

done outside of university property in accordance with

these rules.

16

"3. to be honest and realistic in stating

claims or estimates based on available

data"

Our claim that the quadcopter operates in an

autonomous fashion has been disputed by outside

sources. The claim must be re-assessed and arguments

against it must be carefully considered to see if the claim

is valid. An argument in support of the claim is presented

in section 1.1.1 of this paper.

"4. to reject bribery in all its forms" Bribery to change the quadcopter design would distance

the resulting product from the goal.

"5. to improve the understanding of

technology; its appropriate application,

and potential consequences"

Full documentation of the design of the quadcopter will

ensure that others that attempt the build will avoid the

mistakes made during the design process.

"6. to maintain and improve our technical

competence and to undertake

technological tasks for others only if

qualified by training or experience, or

after full disclosure of pertinent

limitations"

The design of this project was chosen to challenge but not

exceed the abilities of those working on it, to ensure the

result was achieved in the safest way possible. To this

end, sacrifices to complexity may have been taken in

order to allow a reasonable, safe pace of development

throughout the course of the project.

"7. to seek, accept, and offer honest

criticism of technical work, to

acknowledge and correct errors, and to

credit properly the contributions of

others"

The group and the persons in it did not fail to

acknowledge the help provided by peers and staff.

"8. to treat fairly all persons and to not

engage in acts of discrimination based on

race, religion, gender, disability, age,

national origin, sexual orientation,

gender identity, or gender expression"

The group and the persons in it did not discriminate in the

process of seeking help and support in the development

process.

"9. to avoid injuring others, their

property, reputation, or employment by

false or malicious action"

The quadcopter was specifically designed to avoid

injuring others and their property. In cases where the

components of the quadcopter could not perfectly

comply with these standards, the design was changed to

meet these standards.

"10. to assist colleagues and co-workers

in their professional development and to

support them in following this code of

ethics"

Colleagues will be supported in their professional

endeavors, and the code of ethics will always be

integrated into that support.

17

5.3 Future Work
 The immediate future goal of this project would be to test and integrate the

autonomous flight of the quadcopter with the ultrasonic sensor capabilities of the quadcopter. In

order to improve the object detection capabilities of the quadcopter, it would be helpful to

implement more ultrasonic sensors, and to implement higher quality ultrasonic sensors in the

design. The current sensor in use is not reliable enough to be used in future versions of this project.

Additionally, with only one sensor, objects in only one direction can be detected. With multiple

sensors, objects can be detected in multiple directions, ensuring complete protection of the

quadcopter during flight.

 Additionally, it would be useful to implement further refinements to the flight

paths of the quadcopter. In order to improve the flight path quality, additional PID tuning should be

carried out to reduce drift in the quadcopter. Further PID tuning will make it possible to keep better

track of quadcopter position and orientation, which will make navigation around obstacles (and not

simply deactivation upon detection of obstacles) a possibility.

Lastly, if the autonomous setup will be used extensively, it would be helpful to implement a

GUI to allow for users to easily design and implement flight paths. As of now the only way to

develop a flight path is to hardcode it into the ARM microcontroller, which is impractical for the

target product group (casual flyers).

18

References

[1] Federal Aviation Administration. H.R.658 - FAA Modernization And Reform Act Of 2012. 2011.

Print.

[2] O. Liang. “Quadcopter PID Explained and Tuning.” Available at:

http://blog.oscarliang.net/quadcopter-pid-explained-tuning/, Oct 13, 2013.

[3] Micropik. “Ultrasonic Ranging Module HC-SR04.” HC-SR04 datasheet.

[4] multicopter.forestblue.nl. “lipo battery calculator.” Available at:

http://multicopter.forestblue.nl/lipo_need_calculator.html.

[5] J. Case. “CleanFlight PID Tuning.” Available at: http://open-txu.org/home/special-

interests/multirotor/cleanflight-pid-tuning/.

[6] NXP Semiconductors N.V.. “LPC1110/11/12/13/14/15 32-bit ARM Cortex-M0 microcontroller;

up to 64 kB flash and 8 kB SRAM.” LPC1110/11/12/13/14/15 datasheet., 16 Apr. 2010 [Revised

Mar. 2014]

[7] Fairchild. “LM78XX/ LM78XXA 3-Terminal 1 A Positive Voltage Regulator” LM78XX/ LM78XXA

datasheet.

[8] Institute of Electrical and Electronics Engineers, Inc.. “Code of Ethics IEEE.” Available at:

http://www.ieee.org/about/corporate/governance/p7-8.html. 2006.

19

Appendix

Appendix A: Requirement and Verification Table

Requirements Verification Verified?

Power:
1. LiPo must charge to and

provide 11.1V±1.5V and 12A
continuous, 16A burst to
ESCs

2. ARM Microcontroller, Flight
Controller, and Ultrasonic
sensor must receive steady
5V ±0.5V

Power:
1. Monitor initial charge with IMax

B6 Digital Battery charger
2. When plugged in to ESCs,

monitor voltage with multimeter
by measuring from LiPo-ESC
connector in parallel, measure
amperage by connecting
multimeter to same connector,
but in series

Y

Y

ARM Microcontroller:
1. Must duplicate PWM receiver

signals normally sent to flight
controller and send to flight
controller (Duty cycle accurate
within ±5% of desired receiver
signals, Period accurate within
±1% of receiver signals).

2. Must receive data from
ultrasonic sensors by
supplying a pulse and modify
flight path if proximity
conditions are met

ARM Microcontroller:
1. If receiver signals are correctly

duplicated, motors will turn in the
same way as if they had been
controlled directly by the
receiver.

2. If ultrasonic sensor data is
correctly received and processed
the flight path will change and an
LED indicator will light up on the
protoboard. Sending of a pulse
can be verified by hooking the
appropriate output pin to an
oscilloscope.

Y

Y

Flight Controller:
1. Must calibrate accelerometers

so that tilt on all axes is 0°
±1° when placed on a flat
surface.

2. Receive 5V, process receiver
or ARM microcontroller
signals correctly and send
appropriate signals to ESCs.

Flight Controller:
Accelerometers will output to cleanflight
the tilt angles of the flight controller.
Motors will turn when signals are sent to
the flight controller if functional.

Y

Sensors:
Must send ultrasonic distance data
to ARM Microcontroller once
triggered via a TTL pulse. TTL
pulse must be 10µS ± 2µS. In
order to prevent trigger signal
conflicting with echo signal,
measurement cycle must have a
delay between pulses of at least
60 ms.

Sensors:
Externally powering the sensor via
power supply and looking at the echo
output on the sensor via oscilloscope
once a pulse trigger is supplied should
show the signal generated by the return
of the ultrasonic pulse to the sensor. The
ARM microcontroller will supply this
pulse once attached to the sensor.

Y

20

ESC:
1. Must provide up to 5V ±0.5 V

to flight controller and
ultrasonic sensor and 10-12 A
to motors

2. Must output the correct power
(0-220 Watts) to correspond to
the input signals.

ESC:
Voltage and current outputs can be
tested by hooking up a multimeter in
parallel and series respectively. Motors
will turn if system is fully assembled and
controlled via ARM microcontroller or
receiver.

Y

Motors:
Must turn when powered from
ESC and run at comparable
speeds after PID tuning. When
motors all run at max speed,
difference between motor speeds
cannot exceed ± 500 Srpm.
Tolerance for motor speed
differences should scale with
speed (i.e. at half of max speed,
motors can have at max a ± 250
Srpm difference in speeds)

Motors:
1. Plug in the transceiver/receiver

and pushing output throttle to the
maximum

2. Measure the output speed in Hz.
In order to meet requirements,
Hz must not vary between the
four motors by more than 600*
±500/24000 = ±12.5 Hz.

Y

N

21

Appendix B: Large Schematics

Figure 9: Board level schematic for ARM Microprocessor

Figure 10: Board level schematic for ARM Microprocessor in breadboard verification stage

22

Figure 11: From left to right: CC3D, ESCs, Motors. 11.1-12.4 V LiPo batter at top

23

Figure 12: Full quadcopter schematic with obsolete power circuitry (replaced by BECs)

24

Appendix C: Acquired Ultrasonic Data

Table 5: Acquired Ultrasonic Distance Data

Distance

(cm)

Expected

Duration (μS)

Obtained Duration(μS)

1 2 3 4 5 Average % Error

2.00 116.4 239.0 238.0 232.0 237.0 237.0 236.6 50.80

4.00 232.8 321.0 328.0 326.0 344.0 326.0 329.0 29.24

6.00 349.2 376.0 376.0 383.0 382.0 405.0 384.4 9.16

7.00 407.4 414.0 408.0 409.0 409.0 408.0 409.6 0.54

7.50 436.5 436.0 435.0 436.0 431.0 434.0 434.4 0.48

8.00 465.6 466.0 473.0 473.0 472.0 471.0 471.0 1.15

20.00 1164.0 1197.0 1203.0 1203.0 1228.0 1203.0 1206.8 3.55

50.00 2910.0 2965.0 2966.0 2989.0 2965.0 2966.0 2970.2 2.03

55.50 3230.1 3330.0 3281.0 3330.0 3304.0 3299.0 3308.8 2.38

75.00 4365.0 4448.0 4424.0 4426.0 4449.0 4455.0 4440.4 1.70

100+ >5820.0

Outputs random number possibly due to lack of

power from arduino

25

Figure 13: Waveform plot for short distance case

Figure 14: Waveform plot for long distance case

26

Appendix D: ARM Microcontroller code
ece445.h File

#ifndef ECE445_H_
#define ECE445_H_
#include <stdio.h>
#include "LPC11xx.h"
#define MULT 1
#define SYS_CLOCK 48000000
//#define ACCURACY 10000
#define ACCURACY 100000*MULT // 1/(10 micros)
#define SYS_TICK_RELOAD SYS_CLOCK/ACCURACY
#define THROTTLE_PIN 1UL<<1
#define ROLL_PIN 1UL<<2
#define PITCH_PIN 1UL<<4
#define YAW_PIN 1UL<<5
#define AUX1_PIN 1UL<<8
#define AUX2_PIN 1UL<<9
#define ALL THROTTLE_PIN|ROLL_PIN|PITCH_PIN|YAW_PIN|AUX1_PIN|AUX2_PIN
#define HOLD ROLL_PIN|PITCH_PIN|YAW_PIN
#define NUM_RECEIVER 6
#define MIN_PWM 100*MULT // 1.0 ms
#define MAX_PWM 190*MULT // 1.9 ms
#define TOT_PWM_SPACE MAX_PWM-MIN_PWM+1
#define PWM_WIDTH 2000*MULT // 20 ms
#define DEFAULT_PWM 150*MULT
#define UP_THROTTLE 167*MULT
//#define UP_THROTTLE 170
#define HOLD_THROTTLE 164*MULT
//#define DOWN_THROTTLE 144
#define DOWN_THROTTLE 158*MULT
#define R_PITCH 153*MULT
#define L_PITCH 144*MULT
#define HOLD_PITCH 150*MULT-1
#define R_ROLL 153*MULT
#define L_ROLL 145*MULT
#define HOLD_ROLL 150*MULT
#define HOLD_YAW 150*MULT
#define HOLD_PITCH_BALANCE 1*MULT
// Ultrasonic Sensor Part Settings
#define US_MAX_TIME 0x02DC6C00 // 1/(1/(48*10^6)) = 4.8e7, value in ticks
#define MIN_DIST 6 // in cm
#define MAX_DIST 100 // in cm
#define NO_OBJ 2 // Value to return if no object cant be more than MIN_DIST
#define OBJ 1
#define SENSOR_ERR -1 // Same as NO_OBJECT but cannot be equal to NO_OBJECT
#define US_STOP 1500 // us_sensor stops checking after 1500 micros (equivalent to
254 cm)
#define US_SLEEP 4000 // us_sensor is not usable for 40000 micros
// US_sampling Settings
#define US_SAMPLES 20
#define US_S_THRESHOLD 16
// others
#define _5_SECS 5*ACCURACY
#define _10_SECS 10*ACCURACY

27

#define _30_SECS 30*ACCURACY
#define _MS_TO_10MICROS 1000/ACCURACY
enum pwm{
 MIN,
 MAX,
 DEFAULT, // default
 UP, // up_throttle
 HD, //hd_throttle
 DOWN, // dn_throttle
 FRONT, //r_pitch
 HD_P, // hd_pitch
 BACK, //l_pitch
 RIGHT, // r_roll
 HD_R, // hd_roll
 LEFT, // l_roll
 HD_Y, // hd_yaw
 NUM_PWM
};
enum control{
 THROTTLE = 1,
 ROLL = 2,
 PITCH = 4,
 YAW = 5,
 AUX1 = 8,
 AUX2 = 9,
 SIZE = 10
};
enum us_sensor{
 OFF_SENSOR,
 ON_TRIG,
 WAIT_ECHO,
 DONE // stays in this state for a while before off
};
enum us_sampling{
 US_S_OFF,
 US_S_SAMPLING,
};
enum _test{
 _START,
 _FLY, // Flying phase, fly in small steps
 _FLY2, // Hover phase, hover a while to use us_sampling
 _HOVER,
 _DROP,
 //_REPLAN, // Revise decision
 _FINISH
};
void init(void);
void initGPIO(void);
void initControlPins(void);
int ARM(void);
int DISARM(void);
void loop(void);
void setpintime(enum control pin, enum pwm t);
unsigned int armed(void);
void ledOn(void);
void ledOff(void);

28

int up(double dist);
int front(double dist);
void us_sensor(void);
void us_sensor_s(void);
#endif

ece445.c File

#include "ece445.h"

unsigned int count = 0;
unsigned int arm_state = 0;
unsigned int controls[SIZE]; // Store PWM time
unsigned int pwm_states[TOT_PWM_SPACE+1]; // Store values to be sent to the
receiver pins
unsigned int pwm_values[NUM_PWM];
double x,y,z;
double goal_x = 0.0;
double goal_y = 0.0;
double goal_z = 25.0;
unsigned int time_taken = 0;
unsigned int curr_time = 0;
double frame_time = ((double)PWM_WIDTH)*1000.0/(double)ACCURACY; // 20ms

// throttle variables
int throttle_done = 0; // active low
int throttle_wait = 1; // active low
enum pwm throttle_state;
double throttle_vel = 0.05; // 0.5 m/s = 0.05 cm/ms, throttle_vel1=
1/(throttle_vel*_MS_TO_10MICROS)
double throttle_vel1; // converted to multiplier to get count required
double throttle_start;
double throttle_sleep;
double throttle_dist = 0;

// pitch variables
int pitch_done = 0; // active low
int pitch_wait = 1; // active low
enum pwm pitch_state;
double pitch_vel = 0.5; // 1 m/s = 0.1 cm/ms, pitch_vel1=
1/(pitch_vel*_MS_TO_10MICROS);
double pitch_vel1; // converted to multiplier to get count required
double pitch_start; // counter

double pitch_sleep; // counter
double pitch_dist = 0;
double pitch_extra_delay = 0; // this adds to pitch_sleep for extra delay
int HOLD_PITCH_RATIO1 = 3;
int HOLD_PITCH_RATIO2 = 2;
//int HOLD_PITCH_TOTAL = HOLD_PITCH_RATIO1 + HOLD_PITCH_RATIO2;
int pitch_hold_switch_count;

int pitch_hold_switch_type = 0;

// roll variables
int roll_done = 0; // active low
int roll_wait = 1; // active low
enum pwm roll_state;

29

double roll_vel = 0.05; // 1 m/s = 0.1 cm/ms, pitch_vel1=
1/(pitch_vel*_MS_TO_10MICROS);
double roll_vel1; // converted to multiplier to get count required

double roll_start; // counter
double roll_sleep; // counter
double roll_dist = 0;
double roll_extra_delay = 0; // this adds to pitch_sleep for extra delay
int finish = 1;

// Test variables
enum _test test_state = _START;
int hold_sleep = 0;

// ultrasonic sensor variables
enum us_sensor us_sensor_state = OFF_SENSOR;
int us_on_sensor = 1; // active low
int us_running = 1; // active low
int us_trig_sleep = 1; // active low
int us_done = 1; //active low
int us_echo_time; // timer
int distance = 0;
int us_sleep = 0;
int us_ready = 0; //active low

// sampling variables
enum us_sampling us_s_sampling_state = US_S_OFF;
int us_s_did_sampling = 1; // check if recently did sampling, active low
int us_s_on_sampling = 1; // start sampling, active low
int us_s_running = 1; // currently sampling, active low
int us_s_n_samples; // number of samples done
int us_s_positive_samples;
int us_s_curr_time = 0;
int us_s_time_taken = 0;

void SysTick_Handler()
{
 count = (count + 1) % PWM_WIDTH;

 if ((count) < MIN_PWM)
 {
 LPC_GPIO1->DATA |= ALL;
 }

 else if ((count) <= MAX_PWM)
 {
 if (pitch_state == HD_P && (count & (HOLD_PITCH|HOLD_PITCH_BALANCE))
&& pitch_hold_switch_type == 1)
 {
 LPC_GPIO1->DATA &= ~(pwm_states[(count) - MIN_PWM] | (1UL <<
PITCH_PIN));

 }
 else if (pitch_state == HD_P && (count & HOLD_PITCH) &&
pitch_hold_switch_type==0)
 {
 LPC_GPIO1->DATA &= ~(pwm_states[(count) - MIN_PWM] | (1UL <<
PITCH_PIN));
 }

30

 else
 {
 LPC_GPIO1->DATA &= ~(pwm_states[(count) - MIN_PWM]);

 }
 }

 if ((LPC_GPIO1->DATA & 0x00000001) == 1)
 {
 ++us_echo_time;
 }

 if (pitch_hold_switch_count == 0)
 {
 pitch_hold_switch_type ^= 1;

 if (pitch_hold_switch_type & 0x00000001)
 pitch_hold_switch_count = HOLD_PITCH_RATIO2;

 else
 pitch_hold_switch_count = HOLD_PITCH_RATIO1;
 }

 --us_trig_sleep;
 --us_sleep;

 --throttle_sleep;
 --hold_sleep;

 ++us_s_curr_time;

 ++curr_time;
 --pitch_hold_switch_count;

 return;
}
void initGPIO()
{
 // Note: Copied from blinky code. Need to modify!
 LPC_SYSCON->SYSAHBCLKDIV = 1UL;

 //enable clocks to GPIO block

 LPC_SYSCON->SYSAHBCLKCTRL |= (1UL << 6);
 LPC_SYSCON->SYSAHBCLKCTRL |= (1UL << 16);

 // Special Case, IOCON not initially PIO
 LPC_IOCON->R_PIO1_0 |= 0x1;
 LPC_IOCON->R_PIO1_1 |= 0x1;
 LPC_IOCON->R_PIO1_2 |= 0x1;

 LPC_GPIO0->DIR |= (1<<3); // Trigger pin
 LPC_GPIO0->DIR |= (1<<2);//16B0Cap0, LED test pin
 LPC_GPIO1->DIR |= (1<<9);
 LPC_GPIO1->DIR |= (1<<8);
 LPC_GPIO1->DIR |= (1<<7);
 LPC_GPIO1->DIR |= (1<<6);
 LPC_GPIO1->DIR |= (1<<5);

31

 LPC_GPIO1->DIR |= (1<<4);
 //LPC_GPIO1->DIR |= (1<<3);
 LPC_GPIO1->DIR |= (1<<2);

 LPC_GPIO1->DIR |= (1<<1);
 LPC_GPIO1->DIR &= ~(1<<0); // Same as echo pin, unusable
 LPC_GPIO1->DATA = 0;
}
void initControlPins()
{
 int i;

 //initialize pwm_values
 pwm_values[MIN] = MIN_PWM - MIN_PWM;
 pwm_values[MAX] = MAX_PWM - MIN_PWM;
 pwm_values[DEFAULT] = DEFAULT_PWM - MIN_PWM;
 pwm_values[HD] = HOLD_THROTTLE - MIN_PWM;
 pwm_values[UP] = UP_THROTTLE - MIN_PWM;
 pwm_values[DOWN] = DOWN_THROTTLE - MIN_PWM;
 pwm_values[FRONT] = R_PITCH - MIN_PWM;
 pwm_values[HD_P] = HOLD_PITCH - MIN_PWM;
 pwm_values[BACK] = L_PITCH - MIN_PWM;
 pwm_values[LEFT] = R_ROLL - MIN_PWM;
 pwm_values[HD_R] = HOLD_ROLL - MIN_PWM;
 pwm_values[RIGHT] = L_ROLL - MIN_PWM;
 pwm_values[HD_Y] = HOLD_YAW - MIN_PWM;

 // initialize all controls to 1.5ms
 for (i = 0; i <= SIZE; ++i)
 {
 controls[i] = pwm_values[DEFAULT];

 }

 throttle_state = DEFAULT;

 for (i = 0; i <= TOT_PWM_SPACE; ++i)
 {
 pwm_states[i] = 0;
 }

 pwm_states[pwm_values[DEFAULT]] = ALL;

 throttle_vel1= 1/(throttle_vel*_MS_TO_10MICROS);
 pitch_vel1= 1/(pitch_vel*_MS_TO_10MICROS);

 pitch_hold_switch_count = HOLD_PITCH_RATIO1;
}
void ledOn()
{

 LPC_GPIO0->DATA |= 0x00000004;
}
void ledOff()
{
 LPC_GPIO0->DATA &= ~(0x00000004);
}
unsigned int armed()

32

{
 return arm_state;
}

void init()
{
 // ledOn();

 x=y=z=0.0;

 SystemInit();
 initGPIO();
 initControlPins();
 ledOff();

 if (SysTick_Config(SYS_TICK_RELOAD))
 {
 ledOn();
 while(1);
 }

 us_sensor_state = OFF_SENSOR;
 //ledOn();
}
int ARM()
{
 int i;

 if ((count) > MAX_PWM)
 {
 for (i = 0; i < 50; ++i)
 {
 while ((count) > MAX_PWM);

 while ((count) <= MAX_PWM);
 }

 setpintime(THROTTLE,MIN);
 throttle_state = MIN;
 setpintime(YAW,MAX);
 setpintime(AUX1,MIN);

 for (i = 0; i < 50; ++i)
 {
 while ((count) > MAX_PWM);

 while ((count) <= MAX_PWM);
 }

 //setpintime(THROTTLE,DOWN);
 setpintime(ROLL,HD_R);
 setpintime(PITCH,HD_P);
 setpintime(YAW,HD_Y);
 //setpintime(YAW,DEFAULT);
 //setpintime(AUX2,MIN);

33

 arm_state = 1;

 return 0;

 }
 else
 return 1;
}
int DISARM()
{
 int i = 0;

 if ((count) > MAX_PWM)
 {
 setpintime(THROTTLE, MIN);
 throttle_state = MIN;
 setpintime(YAW, MAX);
 setpintime(AUX1, MAX);

 for (i = 0; i < 50; i++)
 {
 while ((count) > MAX_PWM);

 while ((count) <= MAX_PWM);
 }

 //setpintime(THROTTLE,DOWN);
 setpintime(YAW, DEFAULT);
 arm_state = 0;

 return 0;
 }
 else
 return 1;
}
void setpintime(enum control pin, enum pwm t)
{
 if (pwm_states[controls[pin]] == pwm_values[t]) // already set to t
 return;

 pwm_states[controls[pin]] &= ~(1UL << pin); // zero the pin in previous t
 pwm_states[pwm_values[t]] |= 1UL << pin;
 controls[pin] = pwm_values[t]; // set new t of receiver pin

 return;
}
int up(double dist)
{
 int time_taken;

 switch (throttle_state)
 {
 case UP:
 if (throttle_sleep <= 0)
 {
 setpintime(THROTTLE,HD);
 time_taken = throttle_start - throttle_sleep;

34

 throttle_state = HD;
 z += time_taken/throttle_vel1;
 return 0;

 }
 break;

 case DOWN:
 if (throttle_sleep <= 0)
 {
 setpintime(THROTTLE,HD);
 time_taken = throttle_start - throttle_sleep;
 throttle_state = HD;
 z -= time_taken/throttle_vel1;
 return 0;
 }
 break;

 case HD:
 if (throttle_wait || throttle_sleep <= 0)
 {
 throttle_wait = 1;
 if (dist > 0)
 {
 setpintime(THROTTLE,UP);
 throttle_state = UP;
 throttle_start = ((double)dist)*throttle_vel1;
 throttle_sleep = throttle_start;
 }
 else if (dist < 0)
 {
 setpintime(THROTTLE,DOWN);
 throttle_state = DOWN;
 throttle_start = -
1.0*((double)dist)*throttle_vel1;
 throttle_sleep = throttle_start;

 }
 }
 break;
 default:
 setpintime(THROTTLE,HD);
 throttle_state = HD;

 throttle_sleep = (int)throttle_vel1;
 throttle_wait = 0;
 break;
 }

 return 1;
}

int front(double dist)
{
 int time_taken;

 switch (pitch_state)
 {
 case FRONT:

35

 if (pitch_sleep <= 0)
 {
 setpintime(PITCH,DEFAULT);

 time_taken = pitch_start - pitch_sleep;
 pitch_state = DEFAULT;
 x += time_taken/pitch_vel1;
 return 0;
 }
 break;

 case BACK:
 if (pitch_sleep <= 0)
 {
 setpintime(PITCH,DEFAULT);
 time_taken = pitch_start - pitch_sleep;
 pitch_state = DEFAULT;
 x -= time_taken/pitch_vel1;
 return 0;
 }
 break;

 case DEFAULT:
 if (pitch_wait || pitch_sleep <= 0)
 {
 pitch_wait = 1;
 if (dist > 0)
 {
 setpintime(PITCH,FRONT);
 pitch_state = FRONT;
 pitch_start = ((double)dist)*pitch_vel1;
 pitch_sleep = pitch_start;
 }
 else if (dist <= 0)
 {
 setpintime(PITCH,BACK);
 pitch_state = BACK;
 pitch_start = -1.0*((double)dist)*pitch_vel1;
 pitch_sleep = pitch_start;
 }
 }
 break;
 default:

 setpintime(PITCH,DEFAULT);
 pitch_state = DEFAULT;
 pitch_sleep = (int)pitch_vel1;
 pitch_wait = 0;
 break;
 }

 return 1;
}
int right(double dist)// roll
{
 int time_taken;

 switch (roll_state)

36

 {
 case FRONT:
 if (roll_sleep <= 0)

 {
 setpintime(ROLL, HD_R);
 time_taken = roll_start - roll_sleep;
 roll_state = HD_R;
 y += time_taken / roll_vel1;
 return 0;
 }
 break;

 case BACK:
 if (roll_sleep <= 0)
 {
 setpintime(ROLL, HD_R);
 time_taken = roll_start - roll_sleep;
 roll_state = HD_R;
 y -= time_taken / roll_vel1;
 return 0;
 }
 break;

 case HD_R:
 if (roll_wait || roll_sleep <= 0)
 {
 roll_wait = 1;
 if (dist > 0)
 {
 setpintime(ROLL, RIGHT);
 roll_state = FRONT;
 roll_start = ((double)dist)*roll_vel1;
 roll_sleep = roll_start;
 }
 else if (dist <= 0)
 {
 setpintime(ROLL, LEFT);
 roll_state = BACK;
 roll_start = -1.0*((double)dist)*roll_vel1;
 roll_sleep = roll_start;
 }
 }

 break;
 default:
 setpintime(ROLL, HD_R);
 roll_state = HD_R;
 roll_sleep = (int)roll_vel1;
 roll_wait = 0;
 break;

 }
 return 1;
}
void us_sensor()
{
 switch (us_sensor_state)
 {

37

 case OFF_SENSOR:
 if (us_on_sensor == 0)
 us_on_sensor = 1;

 us_sensor_state = ON_TRIG;
 LPC_GPIO0->DATA |= 0x00000008;
 us_trig_sleep = 1;
 us_done = 1;
 //us_ready = 1;
 us_running = 0;
 break;

 case ON_TRIG:
 if (us_trig_sleep <= 0)
 {
 LPC_GPIO0->DATA &= ~(0x00000008);
 us_echo_time = 0;
 us_sensor_state = WAIT_ECHO;
 }
 break;

 case WAIT_ECHO:
 if (((LPC_GPIO1->DATA & 0x00000001) == 0 && us_echo_time != 0)
|| us_echo_time >= US_STOP)
 {
 //ledOn();
 // 2/((340.27m/s)*10^(2 - 6)) = 58.78 micros/cm
 distance = (us_echo_time*10) / 59.0;

 if ((distance < MIN_DIST))
 {
 distance = NO_OBJ;
 //ledOff();
 }
 else if ((distance > MAX_DIST))
 {
 distance = NO_OBJ;
 //ledOff();
 }
 else
 {
 distance = OBJ;
 //ledOn();

 }
 us_running = 1;
 us_done = 0;
 us_sensor_state = DONE;
 us_sleep = US_SLEEP;
 }
 break;

 case DONE:
 if(us_sleep <= 0)
 {
 us_sensor_state = OFF_SENSOR;
 us_ready = 0;
 }
 break;

38

 }
}
void us_sensor_s()

{
 switch (us_s_sampling_state)
 {
 case US_S_OFF:
 if (us_s_on_sampling == 0)// && throttle_state == HD &&
(pwm_states[pwm_values[DEFAULT]] & HOLD))
 {
 us_s_on_sampling = 1;
 us_s_n_samples = 0;
 us_s_positive_samples = 0;
 us_done = 1;
 us_on_sensor = 0;
 us_s_running = 0;
 us_s_sampling_state = US_S_SAMPLING;
 us_s_curr_time = 0;
 }
 break;

 case US_S_SAMPLING:
 if (us_done == 0)
 {
 // update sampling data
 us_s_n_samples++;

 if (distance == OBJ)
 {
 us_s_positive_samples++;
 }

 us_done = 1;

 if (us_s_n_samples == US_SAMPLES)
 {
 // determine result of sampling
 if (us_s_positive_samples < US_S_THRESHOLD)
 {
 distance = NO_OBJ;
 ledOff();
 }

 else
 {
 distance = OBJ;
 ledOn();
 }

 // Wrap up

 us_s_did_sampling = 0;
 us_s_running = 1;
 us_s_time_taken = us_s_curr_time;
 us_s_sampling_state = US_S_OFF;
 }

 else

39

 {
 // restart sampling
 us_on_sensor = 0;

 }
 }
 }
}
void loop()
{
 switch (test_state)
 {
 case _START:
 us_s_did_sampling = 1;
 us_s_on_sampling = 0;
 test_state = _FLY2;

 break;

 case _FLY:
 if (throttle_done == 0)
 {
 if (z < goal_z && x != goal_x && y != goal_y)
 {
 us_s_did_sampling = 1;
 us_s_on_sampling = 0;
 test_state = _FLY2;
 }
 else
 {
 test_state = _HOVER;
 hold_sleep = _30_SECS;
 }
 }
 break;

 case _FLY2:
 if (us_s_did_sampling == 0)
 {
 us_s_did_sampling = 1;

 if (z < goal_z)
 {

 if ((((goal_z - z) / 5) < 1) && (((goal_z - z) / 5) > -
1))
 {
 throttle_dist = goal_z - z;
 }
 else if (goal_z - z > 0)
 {

 throttle_dist = 5;
 }
 else
 {
 throttle_dist = -5;
 }

40

 throttle_done = 1;
 }

 if (x != goal_x)
 {
 if ((((goal_x - x) / 5) < 1) && (((goal_x - x) / 5) > -
1))
 {
 pitch_dist = goal_x - x;
 }
 else if (goal_x - x > 0)
 {
 pitch_dist = 5;
 }
 else
 {
 pitch_dist = -5;
 }

 pitch_done = 1;
 }

 if (y != goal_y)
 {
 if ((((goal_y - y) / 5) < 1) && (((goal_y - y) / 5) > -
1))
 {
 roll_dist = goal_y - y;
 }
 else if (goal_y - y > 0)
 {
 roll_dist = 5;
 }
 else
 {
 roll_dist = -5;
 }

 roll_done = 1;
 }

 test_state = _FLY;

 }
 break;

 case _HOVER:
 if (hold_sleep <= 0)
 {
 throttle_dist = -goal_z - 10; // 10 is just some offset for

extra assurance
 throttle_done = 1;
 test_state = _DROP;
 }
 break;

 case _DROP:

41

 if (throttle_done == 0)
 {
 DISARM();

 test_state = _FINISH;
 }
 break;

 case _FINISH:
 break;
 }

 if ((us_on_sensor == 0 && (pwm_states[pwm_values[DEFAULT]] & HOLD)) ||
us_running == 0)
 {
 us_sensor();
 }

 if (us_s_on_sampling == 0 || us_s_running == 0)
 {
 us_sensor_s();
 }

 if ((count) > MAX_PWM)
 {
 //ledOn();

 if (throttle_done)
 {
 throttle_done = up(throttle_dist);

 if (throttle_done == 0)
 {
 throttle_dist = 0;
 //us_on_sensor = 0;
 }
 }

 if (roll_done)
 {
 roll_done = right(roll_dist);

 if (roll_done == 0)

 {
 roll_dist = 0;
 //us_on_sensor = 0;
 }
 }

 if (pitch_done)

 {
 pitch_done = front(pitch_dist);

 if (pitch_done == 0)
 {
 pitch_dist = 0;
 //us_on_sensor = 0;

42

 }
 }
 //ledOff();

 }
}

main.c File

#include "ece445.h"
int main ()
{
 int i;

 for (i = 0; i < 10000000; i++);
 //for (i = 0; i < 10000000; i++);

 init();
 while(ARM());

 while(armed())
 {
 loop();
 }

 while(1);
 return 0;
}

