Course Announcement <u>ECE 598 - Machine Learning in Silicon (Fall 2017)</u>

Instructor: Naresh R. Shanbhag, <u>http://shanbhag.ece.illinois.edu</u> Credit: 4 hours

Prerequisites: ECE 482 or equivalent. Students should be familiar with programming in MATLAB. HDL (VHDL/Verilog) programming experience is desirable.

Textbook: Instructor notes and assigned technical papers.

Time and Place: 11:00 -12.20, MW, 2074 ECEB

Course Description: This course will introduce the design and implementation of machine learning systems on resource-constrained platforms that are beginning to find use in emerging sensor-rich applications such as wearables, IoTs, autonomous vehicles, and biomedical devices. The course will begin with preliminaries including motivation and scope of the course; terminology, applications and platforms; taxonomy of inference tasks and learning. Algorithm, architecture and circuit trade-offs to meet desired system performance metrics such as accuracy, latency, throughput, will be studied under severe constraints on precision, memory, computation, and energy. The least mean squared (LMS) algorithm will be employed as a vehicle to understand the issues involved in mapping learning algorithms to architectures and circuits including – algorithmic properties (training, convergence); analytical estimation of bit precision requirements; use of data flow-graph (DFG) descriptors; algorithm-to-architecture mapping using DFG transforms; architectural energy and delay estimation via CMOS circuit models of arithmetic units, memory and interconnect; and case studies of CMOS prototypes of LMS. This path from algorithms-to-architectures-to-circuits will be taken for: single stage classifiers (support vector machine, decision trees), classifier ensembles (random forest, ADAboost), and deep neural networks (DNNs/CNNs). Finally, machine learning on silicon operating at limits of energy efficiency will be studied – properties of low-SNR/low-energy nanoscale fabrics; intrinsic error tolerance of machine learning algorithms; error-resilient computing; inexact computing; Shannon-inspired computing (statistical error compensation (SEC)); and case studies of CMOS implementations. Advanced topics include: emerging cognitive applications; deep in-memory architecture (DIMA); systems on beyond CMOS fabrics.

Grading: Course grade will be based on three homework assignments (25%) on the initial part of the course (preliminaries, LMS, single-stage classifiers), one paper presentation (25%), and a course project (50%).

Instructor Office Hours:

Wednesdays: 2pm-3pm, 414 CSL

Contact Prof. Shanbhag at shanbhag@illinois.edu, if consultation at a different time is needed.

Course Web-Page: <u>http://courses.ece.uiuc.edu/ece598ns/fa2017</u> TAs: Ameya Patil (<u>adpatil2@illinois.edu</u>) and Charbel Sakr (<u>sakr2@illinois.edu</u>); TA Office Hours: Patil, Sakr (2-3PM on Fridays); ECEB 2036

Topical Outline

- 1. Preliminaries (<u>hwk1</u>): motivation and scope of the course; terminology, applications (vision, robotics, biomedical) and platforms (cloud, autonomous, human-centric); taxonomy of inference tasks (prediction, classification, recognition, clustering, density estimation); learning and adaptation (supervised, unsupervised).
- 2. The least mean squared (LMS) learning algorithm (<u>hwk2</u>): described using the language of machine learning; connection to stochastic gradient descent (SGD) algorithm; applications (prediction, estimation, modeling) for time-series data; precision requirements; data-flow graphs (DFGs) and algorithm-to-architecture mapping via algorithm transforms (retiming, pipelining, block processing, folding, and unfolding); architectural level energy and delay estimation (delay and energy models of CMOS arithmetic units, SRAM, and interconnect); Case studies of CMOS implementations will be presented.
- 3. Single stage classifiers and ensemble methods (<u>hwk3</u>): ADALINE; perceptron; support vector machine (SVM); decision trees; random forest; boosting (AdaBoost); supervised learning algorithms; precision requirements; energy efficient architectures via algorithm transforms; Case studies of CMOS implementations;
- Deep neural networks (paper presentations): fully-connected and convolutional networks; training via back-propagation algorithm; precision requirements; DNN architectures (DianNao, Tensor Processing Unit, Eyeriss); Case studies of CMOS implementations;
- 5. non von Neumann computing for machine learning: inherent error-tolerance of ML algorithms; low SNR circuits (near threshold voltage (NTV), all-spin logic, RRAM); error-resilient computing (RAZOR, error detection sequential (EDS)); inexact computing (approximate computing, neuromorphic computing, probabilistic computing); Shannon-inspired computing (statistical error compensation (SEC)); Case studies of CMOS implementations;
- 6. The Future: challenges and opportunities in designing machine learning systems on stochastic and low-SNR circuit fabrics deep in-memory architecture (DIMA), systems on emerging beyond CMOS fabrics, fundamental limits on energy and reliability, and others.

#	Date	Торіс	Remarks
1	28-Aug	Introduction to ECE 598NS	
2	30-Aug	The LMS Algorithm and SGD	
3	4-Sep	Labor Day - No Class	
4	6-Sep	Fixed-point Algorithms	
5	11-Sep	Algorithm-to-Architecture Mapping Techniques	
6	13-Sep	Energy-Delay Trade-offs	TA lecture
7	18-Sep	Linear SVM and Case Study	
8	20-Sep	Fixed-point, Training & Non-linear SVM	
9	25-Sep	Ensemble Methods - ADABoost	
10	27-Sep	Case Study - EACB	
11	2-Oct	Deep Neural Networks and CNN	
12	4-Oct	No Class	SONIC annual meeting
13	9-Oct	Fixed-point issues and training DNNs	
14	11-Oct	Low-complexity DNNs	
15	16-Oct	Case Studies - TPU, DianNao	
16	18-Oct	Case Studies - Eyeriss, Brooks	TA lecture
		Non von Neumann Architectures - Neurmorphic &	
17	23-Oct	Approximate Computing	
		Non von Neumann Architectures - Error-resilient,	
18	25-Oct	Stochastic and Hyperdimensional Computing	
19	30-Oct	Student presentations	
20	1-Nov	Student presentations	
21	6-Nov	Student presentations	
22	8-Nov	Student presentations	
23	13-Nov	Student presentations	
24	15-Nov	Student presentations	
		11/18/2017-11/26/2017 Thanksgiving Break	
25	27-Nov	Shannon-inspired Computing	
26	29-Nov	Shannon-inspired Computing	
27	4-Dec	Deep In-memory Computing	
28	6-Dec	Deep In-memory Computing	
29	11-Dec	Inference on Nanoscale Stochastic Fabrics	
30	13-Dec	Project Report & Presentations Due	

Lecture Schedule