CS440/ECE448 Lecture 22: Expectiminimax

Mark Hasegawa-Johnson, 3/2024
These slides are in the public domain.

A contemporary backgammon set. Public domain photo by
Manuel Hegner, 2013,
https://commons.wikimedia.org/w/index.php?curid=25006945

Outline

- Expectiminimax: Minimax + randomness
- Relationship of expectiminimax to MDP

Stochastic games

How can we incorporate dice throwing into the game tree?

Minimax

State evolves deterministically (when a player acts, that action uniquely determines the following state).

Current state is visible to both players.
Each player tries to maximize his or her own reward:

- Maximize (over all possible moves I can make) the
- Minimum (over all possible moves Min can make) of the resulting utility:

$$
\begin{gathered}
u(s)=\max _{s^{\prime} \in C(s)} u\left(s^{\prime}\right) \\
u\left(s^{\prime}\right)=\min _{s^{\prime \prime} \in C\left(s^{\prime}\right)} u\left(s^{\prime \prime}\right)
\end{gathered}
$$

Expectiminimax

State evolves stochastically (when a player acts, the game changes RANDOMLY, with a probability distribution
$P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right)$ that depends on the action, a).

The player tries to maximize his or her own reward:

- Maximize (over all possible moves I can make) the
- Expected value (over all possible successor states) of the resulting utility:

$$
\sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

Expectiminimax

State evolves stochastically (when a player acts, that action influences the state transition probability).

Current state is visible to both players.
Each player tries to maximize his or her own reward:

- Maximize (over all possible moves I can make) the
- Minimum (over all possible moves Min can make) of the
- Expected value (over all possible successor states) of the
 resulting utility:

$$
\begin{gathered}
u(s)=\max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) \\
u\left(s^{\prime}\right)=\min _{a \prime} \sum_{s^{\prime \prime}} P\left(S_{t+2}=s^{\prime \prime} \mid S_{t+1}=s^{\prime}, a^{\prime}\right) u\left(s^{\prime \prime}\right)
\end{gathered}
$$

Expectiminimax: notation

A
$=$ MAX node. $u(s)=\max _{a \in A(s)} q(s, a)$
$=$ MIN node. $u(s)=\min _{a \in A(s)} q(s, a)$
$=$ Chance node. $q(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u\left(s^{\prime}\right)$

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.

By ICMA Photos - Coin Toss, CC BY-SA 2.0, https://commons.wikimed ia.org/w/index.php?curid= 71147286

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.
- MAX: Max decides whether to count heads (action H) or tails (action T) as a forward movement.

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.
- MAX: Max decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: he flips a coin and moves his game piece in the direction indicated.

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.
- MAX: Max decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: he flips a coin and moves his game piece in the direction indicated.
Reward: $\$ 2$ to the winner, $\$ 0$ for a draw.

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

By NJR ZA - Own work, CC BY-SA 3.0,
https://commons.wikimed ia.org/w/index.php?curid= 4228918

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366. \$2 By Bureau of Engraving and Printing: U.S. Department of the Treasury - own scanned, Public Domain, https://commons.wikimedia.org/w/index.php?curid=56299470

Expectiminimax example

- MIN: Min decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: she flips a coin and moves her game piece in the direction indicated.
- MAX: Max decides whether to count heads (action H) or tails (action T) as a forward movement.
- Chance: he flips a coin and moves his game piece in the direction indicated.
Reward: $\$ 2$ to the winner, $\$ 0$ for a draw.

Expectiminimax example Chance node:

$$
q(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u\left(s^{\prime}\right)
$$

Expectiminimax example
Max node:

$$
u(s)=\max _{a \in A(s)} q(s, a)
$$

Expectiminimax example Chance node:

$$
q(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) u\left(s^{\prime}\right)
$$

Expectiminimax example
Min node:

$$
u(s)=\min _{a \in A(s)} q(s, a)
$$

Try the quiz!

https://us.prairielearn.com/pl/course_instance/147925/assessment/24 $\underline{04166}$

Outline

- Expectiminimax: Minimax + randomness
- Relationship of expectiminimax to MDP

Relationship of expectiminimax to MDP

Remember that the solution to a Markov decision process is the policy that maximizes the Bellman equation, which we could call the expectimax equation:

$$
u(s)=\max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

Expectiminimax maximizes a generalized Bellman equation:

$$
u(s)= \begin{cases}\max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) & s \text { is a max state } \\ \min _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) & s \text { is a min state }\end{cases}
$$

These two are fundamentally the same operation, and should require the same computations.

Computational complexity of MDP

- Value iteration:

$$
u_{i}(s)=r(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u_{i-1}\left(s^{\prime}\right)
$$

- $\mathcal{O}\{n b\}$ computations per iteration, where:
- $n=$ number of states,
- $b=$ branching factor = (number of actions) \times (number of successor states)
- Number of iterations may be infinite; $i^{\text {th }}$ iteration explores paths of length up to i
- Policy iteration:

$$
\begin{gathered}
u_{i}(s)=r(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi_{i}(s)\right) u_{i}\left(s^{\prime}\right) \\
\pi_{i+1}(s)=\underset{a}{\operatorname{argmax}} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u_{i}\left(s^{\prime}\right)
\end{gathered}
$$

- $\mathcal{O}\{n b\}$ computations per iteration
- Number of iterations guaranteed to be less than or equal to the number of possible policies, which is $\mathcal{O}\left\{b^{n}\right\}$

Computational complexity of expectiminimax

Computational complexity of expectiminimax

- $u_{d}(s)=r(s)+$
$\gamma \min _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u_{d-1}\left(s^{\prime}\right)$
- Effectively, expectiminimax is finding the solution of a d-step value iteration: considering only paths that are up to d moves long.
- Time complexity $=\mathcal{O}\{n b d\}$, where
- $n=\#$ states (assuming, as in an MDP, that loops are possible, so every state appears in every level of the tree)
- $b=$ branching factor = (number of actions) \times (number of successor states)
- $d=$ depth of the tree

Summary

Bellman equation $=$ expectimax:

$$
u(s)=\max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right)
$$

Expectiminimax:
$u(s)$
$= \begin{cases}\max _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) & s \text { is a max state } \\ \min _{a} \sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid S_{t}=s, a\right) u\left(s^{\prime}\right) & s \text { is a min state }\end{cases}$

