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1 INTRODUCTIONReinforcement learning is the process by which an agent improves its behavior in an en-vironment via experience. A reinforcement-learning scenario is de�ned by the experiencepresented to the agent at each step, and the criterion for evaluating the agent's behavior.One particularly well-studied reinforcement-learning scenario is that of a single agentmaximizing expected discounted total reward in a �nite-state environment; experiences areof the form hx; a; y; ri, where x is a state, a is an action, y is a resulting state and r is thescalar immediate reward to the agent. A discount parameter 0 �  < 1 controls the degreeto which future rewards are signi�cant compared to immediate rewards.The theory of Markov decision processes can be used as a theoretical foundation forimportant results concerning this reinforcement-learning scenario [1]. A (�nite) Markovdecision process (mdp) [18] is de�ned by the tuple hS;A; P;Ri, where S represents a �niteset of states, A a �nite set of actions, P a transition function, and R a reward function.The optimal behavior for an agent in an mdp depends on the optimality criterion; for thein�nite-horizon discounted criterion, the optimal behavior can be found by identifying theoptimal value function, de�ned recursively byV �(x) = maxa  R(x; a) + Xy P (x; a; y)V �(y)! ;for all states x 2 S, where R(x; a) is the immediate reward for taking action a from statex, 0 �  < 1 is a discount factor, and P (x; a; y) is the probability that state y is reachedfrom state x when action a 2 A is chosen. These simultaneous equations, known as theBellman equations, can be solved using a variety of techniques ranging from successiveapproximation [2] to linear programming [6].In the absence of complete information regarding the transition and reward functions,reinforcement-learning methods can be used to �nd optimal value functions. Both model-free (direct) methods, such as Q-learning [33], and model-based (indirect) methods, such asprioritized sweeping [15] and DYNA [26], have been explored and many have been shown toconverge to optimal value functions under the proper conditions [33, 31, 10, 7].As we mentioned before, not all reinforcement-learning scenarios of interest can be mod-eled as mdps. A great deal of reinforcement-learning research has been directed to theproblem of solving two-player games [29, 30, 21, 4], for example, and the reinforcement-learning algorithms for solving mdps and their convergence proofs do not apply directly togames. In one form of two-player game, experiences are of the form hx; a; y; ri, where statesx and y contain additional information concerning which player (maximizer or minimizer)gets to choose the action in that state, and the optimality criterion is minimax optimality.There are deep similarities between mdps and games; for example, it is possible to de�nea set of Bellman equations for the optimal minimax value of a two-player zero-sum game,V �(x) = ( maxa2A �R(x; a) + Py P (x; a; y)V �(y)� ; if maximizer moves in xmina2A (R(x; a) + Px P (x; a; y)V �(y)) ; if minimizer moves in x,where R(x; a) is the reward to the maximizing player. When 0 �  < 1, these equations havea unique solution and can be solved by successive-approximation methods [23]. In addition,2



we show in this paper that the natural extension of several reinforcement-learning algorithmsfor mdps converge to optimal value functions in two-player games.In this paper, we introduce a generalized Markov decision process model with applicationsto reinforcement learning, and list some of the important results concerning the model. Gen-eralized mdps provide a foundation for the use of reinforcement learning in mdps and games,as well in risk-sensitive reinforcement learning [8], exploration-sensitive reinforcement learn-ing [11], reinforcement learning in simultaneous-action games [13], and other models. Ourmain theorem addresses the convergence of asynchronous stochastic processes and shows howthis problem can be reduced to determining the convergence of a corresponding synchronousone; it can be used to prove the convergence of model-free and model-based reinforcement-learning algorithms under a variety of di�erent reinforcement-learning scenarios.In Section 2, we present generalized mdps, and motivate them using two detailed ex-amples. In Section 3, we describe a stochastic-approximation theorem, and in Section 4 weshow several applications of the theorem that prove the convergence of learning processes ingeneralized mdps.2 THE GENERALIZED MODELIn this section, we introduce our generalized mdp model. We begin by summarizing some ofthe more signi�cant results regarding the standard mdp model and some important resultsfor two-player games.2.1 MARKOV DECISION PROCESSESTo provide a point of departure for our generalization of Markov decision processes, we beginby describing some results concerning the use of reinforcement learning in the mdp scenariodescribed earlier. These results are well established; proofs of the unattributed claims canbe found in Puterman's mdp book [18].The ultimate target of learning is an optimal policy. A policy is some function thattells the agent which actions should be chosen under which circumstances. A policy � isoptimal under the expected discounted total reward criterion if, with respect to the space ofall possible policies, � maximizes the expected discounted total reward from all states.Maximizing over the space of all possible policies is practically infeasible. However,mdps have an important property that makes it unnecessary to consider such a broad spaceof possibilities. We say a policy � is stationary and deterministic if it maps directly fromstates to actions, ignoring everything else, and we write �(x) as the action chosen by �when the current state is x. In expected discounted total reward mdp environments, thereis always a stationary deterministic policy that is optimal; we will therefore use the word\policy" to mean stationary deterministic policy, unless otherwise stated.The value function for a policy �, V �, maps states to their expected discounted totalreward under policy �. It can be de�ned by the simultaneous equationsV �(x) = R(x; a) + Xy P (x; a; y)V �(y):3



It is also possible to condition the immedate rewards on the state y as well; this is somewhatmore general, but complicates the presentation. The optimal value function V � is the valuefunction of an optimal policy; it is unique for 0 �  < 1. The myopic policy with respect toa value function V is the policy �V such that�V (x) = argmaxa  R(x; a) + Xy P (x; a; y)V (y)! :Any myopic policy with respect to the optimal value function is optimal.The Bellman equations can be operationalized in the form of the dynamic-programmingoperator T , which maps value functions to value functions:[TV ](x) = maxa  R(x; a) + Xy P (x; a; y)V (y)! :For 0 �  < 1, successive applications of T to a value function bring it closer and closer tothe optimal value function V �, which is the unique �xed point of T : V � = TV �.In reinforcement learning, R and P are not known in advance. They can be learnedfrom experience by keeping statistics on the expected reward for each state-action pair, andthe proportion of transitions to each next state for each state-action pair. In model-basedreinforcement learning, R and P are estimated on-line, and the value function is updatedaccording to the approximate dynamic-programming operator derived from these estimates;this algorithm converges to the optimal value function under a wide variety of choices of theorder states are updated [7].The method of Q-learning [32] uses experience to estimate the optimal value functionwithout ever explicitly approximating R and P . The algorithm estimates the optimal Qfunction Q�(x; a) = R(x; a) + Xy P (x; a; y)V �(y);from which the optimal value function can be computed via V �(x) = maxaQ�(x; a). Giventhe experience at step t hxt; at; yt; rti and the current estimate Qt(x; a) of the optimal Qfunction, Q-learning updatesQt+1(xt; at) := (1 � �t(xt; at))Qt(xt; at) + �t(xt; at)(rt + maxa Qt(yt; a));where 0 � �t(x; a) � 1 is a learning rate that controls how quickly new estimates are blendedinto old estimates as a function of the state-action pair and the trial number. Q-learningconverges to the optimal Q function under the proper conditions [33, 31, 10].2.2 ALTERNATING MARKOV GAMESIn alternating Markov games, two players take turns issuing actions to try to maximize theirown expected discounted total reward. The model is de�ned by the tuple hS1; S2; A;B; P;Ri,where S1 is the set of states in which player 1 issues actions from the set A, S2 is the set ofstates in which player 2 issues actions from the set B, P is the transition function, and R isthe reward function for player 1. In the zero-sum games we consider, the rewards to player 24



(the minimizer) are simply the additive inverse of the rewards for player 1 (the maximizer).Markov decision processes are a special case of alternating Markov games in which S2 = ;;Condon [5] proves this and the other unattributed results in this section.A common optimality criterion for alternating Markov games is discounted minimaxoptimality. Under this criterion, the maximizer should choose actions so as to maximizeits reward in the event that the minimizer chooses the best possible counter-policy. Anequivalent de�nition is for the minimizer to choose actions to minimize its reward against themaximizer with the best possible counter-policy. A pair of policies is said to be in equilibriumif neither player has any incentive to change policies if the other player's policy remains �xed.The value function for a pair of equilibrium policies is the optimal value function for thegame; it is unique when 0 �  < 1, and can be found by successive approximation. Forboth players, there is always a deterministic stationary optimal policy. Any myopic policywith respect to the optimal value function is optimal, and any pair of optimal policies is inequilibrium.Dynamic-programming operators, Bellman equations, and reinforcement-learning algo-rithms can be de�ned for alternating Markov games by starting with the de�nitions used inmdps and changing the maximum operators to either maximums or minimums conditionedon the state. We show below that the resulting algorithms share their convergence propertieswith the analogous algorithms for mdps.2.3 GENERALIZED MDPSIn alternating Markov games and mdps, optimal behavior can be speci�ed by the Bellmanequations; any myopic policy with respect to the optimal value function is optimal. In thissection, we generalize the Bellman equations to de�ne optimal behavior for a broad class ofreinforcement-learning models. The objective criterion used in these models is additive inthat the the value of a policy is some measure of the total reward received.The generalized Bellman equations can be writtenV �(x) =Oa  R(x; a) + My V �(y)! : (1)Here, \N" and \L" represent operators that summarize values over actions as a functionof the state x and next states as a function of the state-action pair (x; a), respectively. ForMarkov decision processes,Na f(x; a) = maxa f(x; a) andLy g(x; a; y) = Py P (x; a; y)g(x; a; y).For alternating Markov games, Ly g(x; a; y) = Py P (x; a; y)g(x; a; y) and Na f(x; a) =maxa f(x; a) or mina f(x; a) depending whether x is in S1 or S2. A large variety of othermodels can be represented in this framework; several examples are discussed in Section 4.From a reinforcement-learning perspective, the value functions de�ned by the generalizedmdp model can be interpreted as the total value of the rewards received by an agent selectingactions in a stochastic environment. The agent begins in state x, takes action a, and endsup in state y. The L operator de�nes how the value of the next state should be used inassigning value to the current state. The N operator de�nes how an optimal agent shouldchoose actions.When 0 �  < 1 and N and L are non-expansions, the generalized Bellman equationshave a unique optimal solution, and therefore, the optimal value function is well de�ned.5



model/example reference Na f(x; a) Ly g(x; a; y)disc. exp. mdps [33] maxa f(x; a) Py P (x; a; y)g(x; a; y)exp. return of � [25] Pa �(x; a)f(x; a) Py P (x; a; y)g(x; a; y)alt. Markov games [4] maxa or mina f(x; a) Py P (x; a; y)g(x; a; y)risk-sensitive mdps [8] maxa f(x; a) miny:P (x;a;y)>0 g(x; a; y)exploration-sens. mdps [11] max�2P0 Pa �(x; a)f(x; a) Py P (x; a; y)g(x; a; y)Markov games [13] maxAminbPaA(a)f(x; (a; b)) Py P (x; (a; b); y)g(x; (a; b); y)information-state mdp [16] maxa f(x; a) Py2N(x;a)P (x; a; y)g(x; a; y)Table 1: Some reinforcement-learning scenarios and their speci�cation as generalized Markovdecision processes.The N operator is a non-expansion if�����Oa f1(x; a)�Oa f2(x; a)����� � maxa jf1(x; a)� f2(x; a)jfor all f1, f2, and x. An analogous condition de�nes when L is a non-expansion.Many natural operators are non-expansions, such as max, min, midpoint, median, mean,and �xed weighted averages of these operations. Mode and Boltzmann-weighted averagesare not non-expansions. Several previously described reinforcement-learning scenarios arespecial cases of this generalized mdp model|Table 1 gives a brief sampling. For moreinformation about the speci�c models listed, see the associated references.As with mdps, we can de�ne a dynamic-programming operator[TV ](x) =Oa  R(x; a) + My V (y)! (2)such that for 0 �  < 1 the optimal value function V � is the unique �xed point of T . Theoperator T is a contraction mapping as long as  < 1. Recall that an operator T is acontraction mapping ifsupx j[TV1](x)� [TV2](x)j �  supx jV1(x)� V2(x)jwhere V1 and V2 are arbitrary functions and 0 �  < 1 is the index of contraction.We can de�ne a notion of stationary myopic policies with respect to a value function V ;it is any (stochastic) policy �V for which T �V = TV where[T �V ](x) =Xa �(x; a) R(x; a) + My V (y)! :Here �(x; a) represents the probability that an agent following � would choose action a instate x. To be certain that every value function possesses a myopic policy, we require thatthe operator N satisfy the following property: for all functions f and states x, mina f(x; a) �Na f(x; a) � maxa f(x; a). 6



The value function with respect to a policy �, V � can be de�ned by the simultaneousequations V �(x) =Xa �(x; a) R(x; a) + My V �(y)! ;it is unique. A policy � is optimal if it is myopic with respect to its own value function. If�� is an optimal policy, then V �� is the �xed point of T because V �� = T ��V �� = TV ��.Thus, V �� = V �, when  < 1 because T has a unique �xed point.The next section describes a general theorem that can be used to prove the convergenceof several reinforcement-learning algorithms for these and other models.3 CONVERGENCE THEOREMThe process of �nding an optimal value function can be viewed in the following generalway. At any moment in time, there is a set of values representing the current approximationof the optimal value function. On each iteration, we apply some dynamic-programmingoperator, perhaps modi�ed by experience, to the current approximation to generate a newapproximation. Over time, we would like the approximation to tend toward the optimalvalue function.In this process, there are two types of approximation going on simultaneously. The �rstis an approximation of the dynamic-programming operator for the underlying model, andthe second is the use of the approximate dynamic-programming operator to �nd the optimalvalue function. This section presents a theorem that gives a set of conditions under whichthis type of simultaneous stochastic approximation converges to an optimal value function.First, we need to de�ne the general stochastic process. Let the set X be the states ofthe model, and the set B (X) of bounded, real-valued functions over X be the set of valuefunctions. Let T : B (X) ! B (X) be an arbitrary contraction mapping and V � be the �xedpoint of T .If we had direct access to the contraction mapping T , we could use it to successivelyapproximate V �. In most reinforcement-learning scenarios, T is not available and wemust useour experience to construct approximations of T . Consider a sequence of random operatorsTt : B (X) ! (B (X) ! B (X)) and de�ne Ut+1 = [TtUt]V where V and U0 2 B (X) arearbitrary value functions. We say Tt approximates T at V with probability 1 uniformly overX, if Ut converges to TV uniformly over X1. The basic idea is that Tt is a randomizedversion of T in some sense; it uses Ut as \memory" to help it approximate TV .The following theorem shows that, under the proper conditions, we can use the sequenceTt to estimate the �xed point V � of T .Theorem 1 Let T be an arbitrary mapping with �xed point V �, and let Tt approximate Tat V � with probability 1 uniformly over X. Let V0 be an arbitrary value function, and de�neVt+1 = [TtVt]Vt. If there exist functions 0 � Ft(x) � 1 and 0 � Gt(x) � 1 satisfying theconditions below with probability one, then Vt converges to V � with probability 1 uniformlyover X:1A sequence of functions fn converges to f� with probability 1 uniformly over X if, for the events w forwhich fn(w; x)! f�, the convergence is uniform in x.7



1. for all U1, and U2 2 B (X) and all x 2 X,j([TtU1]V �)(x)� ([TtU2]V �)(x)j � Gt(x) supx0 jU1(x0)� U2(x0)j;2. for all U and V 2 B (X), and all x 2 X,j([TtU ]V �)(x)� ([TtU ]V )(x)j � Ft(x) supx0 jV �(x0)� V (x0)j;3. for all k > 0, �nt=kGt(x) converges to zero uniformly in x as n increases; and,4. there exists 0 �  < 1 such that for all x 2 X and large enough t,Ft(x) � (1 �Gt(x)):Note that from the conditions of the theorem, it follows that T is a contraction operatorat V � with index of contraction . The theorem is proven in an extended version of thispaper [28]. We next describe some of the intuition behind the statement of the theorem andits conditions.The iterative approximation of V � is performed by computing Vt+1 = [TtVt]Vt, where Ttapproximates T with the help of the \memory" present in Vt. Because of Conditions 1 and 2,Gt(x) is the extent to which the estimated value function depends on its present value andFt(x) � 1 � Gt(x) is the extent to which the estimated value function is based on \new"information (this reasoning becomes clearer in the context of the applications in Section 4).In some applications, such as Q-learning, the contribution of new information needs todecay over time to insure that the process converges. In this case, Gt(x) needs to convergeto one. Condition 3 allows Gt(x) to converge to 1 as long as the convergence is slow enoughto incorporate su�cient information for the process to converge.Condition 4 links the values of Gt(x) and Ft(x) through some quantity  < 1. If itwere somehow possible to update the values synchronously over the entire state space, theprocess would converge to V � even when  = 1. In the more interesting asynchronous case,when  = 1, the long-term behavior of Vt is not immediately clear; it may even be that Vtconverges to something other than V �. The requirement that  < 1 insures that the use ofoutdated information in the asynchronous updates does not cause a problem in convergence.One of the most noteworthy aspects of this theorem is that it shows how to reduce theproblem of approximating V � to the problem of approximating T at a particular point V(in particular, it is enough if T can be approximated at V �); in many cases, the latter ismuch easier to achieve and also to prove. For example, the theorem makes the convergenceof Q-learning a consequence of the classical Robbins-Monro theorem [20].4 APPLICATIONSThis section makes use of Theorem 1 to prove the convergence of various reinforcement-learning algorithms. 8



4.1 GENERALIZED Q-LEARNING FOR EXPECTED VALUEMODELSConsider the family of �nite state and action generalized mdps de�ned by the Bellmanequations V �(x) =Oa  R(x; a) + Xy P (x; a; y)V �(y)!where the de�nition of N does not depend on R or P . A Q-learning algorithm for this classof models can be de�ned as follows. Given experience hxt; at; yt; rti at time t and an estimateQt(x; a) of the optimal Q function, letQt+1(xt; at) := (1 � �t(xt; at))Qt(xt; at) + �t(xt; at) rt + Oa Qt(yt; a)! :We can derive the assumptions necessary for this learning algorithm to satisfy the con-ditions of Theorem 1 and therefore converge to the optimal Q values. The dynamic-programming operator de�ning the optimal Q function is[TQ](x; a) = R(x; a) + Xy P (x; a; y)Oa0 Q(y; a0):The randomized approximate dynamic-programming operator that gives rise to the Q-learning rule is([TtQ0]Q)(x; a) = (1� �t(x; a))Q0(x; a) + �t(x; a)(rt + Na0 Q(yt; a0)); if x = xt and a = atQ0(x; a); otherwise.If� yt is randomly selected according to the probability distribution de�ned by P (xt; at; �),� N is a non-expansion, and both the expected value and the variance of NaQ(yt; a)exist given the way yt is sampled,� rt has �nite variance and expected value given xt and at equal to R(xt; at),� the learning rates are decayed so that Pt �(xt = x; at = a)�t(x; a) = 1 and Pt �(xt =x; at = a)�t(x; a)2 <1 with probability 1 uniformly over X �A 2,then a standard result from the theory of stochastic approximation [20] states that Tt ap-proximates T with probability 1 uniformly over X � A. That is, this method of using adecayed, exponentially weighted average correctly computes the average one-step reward.Let Gt(x; a) = ( 1 � �t(x; a); if x = xt and a = at;0; otherwise,2This condition implies, among other things, that every state-action pair is updated in�nitely often. Here,� denotes the characteristic function. 9



and Ft(x; a) = ( �t(x; a); if x = xt and a = at;0; otherwise.These functions satisfy the conditions of Theorem 1 (Condition 3 is implied by the restrictionsplaced on the sequence of learning rates �t).Theorem 1 therefore implies that this generalized Q-learning algorithm converges to theoptimal Q function with probability 1 uniformly over X�A. The convergence of Q-learningfor discounted mdps and alternating Markov games follows trivially from this. Extensionsof this result for undiscounted \all-policies-proper" mdps [3], a soft state aggregation learn-ing rule [24], and a \spreading" learning rule [19] are given in an extended version of thispaper [28].4.2 Q-LEARNING FOR MARKOV GAMESMarkov games are a generalization of mdps and alternating Markov games in which bothplayers simultaneously choose actions at each step. The basic model was developed by Shap-ley [23] and is de�ned by the tuple hS;A;B; P;Ri and discount factor . As in alternatingMarkov games, the optimality criterion is one of discounted minimax optimality, but becausethe players move simultaneously, the Bellman equations take on a more complex form:V �(x) = max�2�(A)minb2B Xa2A �(a)0@R(x; a; b) + Xy2S P (x; a; b; y)V �(y)1A :In these equations, R(x; a; b) is the immediate reward for the maximizer for taking actiona in state x at the same time the minimizer takes action b, P (x; a; b; y) is the probabilitythat state y is reached from state x when the maximizer takes action a and the minimizertakes action b, and �(A) represents the set of discrete probability distributions over the setA. The sets S, A, and B are �nite.Once again, optimal policies are policies that are in equilibrium, and there is always apair of optimal policies that are stationary. Unlike mdps and alternating Markov games, theoptimal policies are sometimes stochastic; there are Markov games in which no deterministicpolicy is optimal. The stochastic nature of optimal policies explains the need for the opti-mization over probability distributions in the Bellman equations, and stems from the factthat players must avoid being \second guessed" during action selection. An equivalent set ofequations can be written with a stochastic choice for the minimizer, and also with the rolesof the maximizer and minimizer reversed.The Q-learning update rule for Markov games [13] given step t experience hxt; at; bt; yt; rtihas the formQt+1(xt; at; bt) := (1� �t(xt; at; bt))Qt(xt; at; bt) + �t(xt; at; bt)0@rt + Oa;b Qt(yt; a; b)1A ;where Oa;b g(x; a; b) = max�2�(A)minb2B Xa2A �(a)g(x; a; b):The results of the previous section prove that this rule converges to the optimal Q functionunder the proper conditions. 10



4.3 RISK-SENSITIVE MODELSHeger [8] described an optimality criterion for mdps in which only the worst possible valueof the next state makes a contribution to the value of a state. An optimal policy underthis criterion is one that avoids states for which a bad outcome is possible, even if it isnot probable; for this reason, the criterion has a risk-averse quality to it. The generalizedBellman equations for this criterion areV �(x) =Oa  R(x; a) +  miny:P (x;a;y)>0 V �(y)! :The argument in Section 4.5 shows that model-based reinforcement learning can be usedto �nd optimal policies in risk-sensitive models, as long as N does not depend on R or P ,and P is estimated in a way that preserves its zero vs. non-zero nature in the limit.For the model in which Na f(x; a) = maxa f(x; a), Heger de�ned a Q-learning-like al-gorithm that converges to optimal policies without estimating R and P online. In essence,the learning algorithm uses an update rule analogous to the rule in Q-learning with theadditional requirement that the initial Q function be set optimistically; that is, Q0(x; a)must be larger than Q�(x; a) for all x and a. Like Q-learning, this learning algorithm is ageneralization of Korf's [12] LRTA* algorithm for stochastic environments.Using Theorem 1 it is possible to prove the convergence of a generalization of Heger'salgorithm to models where Na f(x; a) = f(x; a�(f; x)) for some function a�(�); that is, aslong as the summary value of f(x; a) is equal to f(x; a�) for some a�. The proof is basedon estimating the Q-learning algorithm from above by an appropriate process where the Qfunction is updated only if the received experience tuple is an extremity according to theoptimality equation; details are given in the extended paper [28].4.4 EXPLORATION-SENSITIVE MODELSJohn [11] considered the implications of insisting that reinforcement-learning agents keepexploring forever; he found that better learning performance can be achieved if the Q-learning rule is changed to incorporate the condition of persistent exploration. In John'sformulation, the agent is forced to adopt a policy from a restricted set; in one example, theagent must choose a stochastic stationary policy that selects actions at random 5% of thetime.This approach requires that the de�nition of optimality be changed to reect the restric-tion on policies. The optimal value function is given by V �(x) = sup�2P0 V �(x), where P0 isthe set of permitted (stationary) policies, and the associated Bellman equations areV �(x) = sup�2P0Xa �(x; a) R(x; a) + Xy P (x; a; y)V �(y)! ;which corresponds to a generalized mdp model with Ly g(x; a; y) = Py P (x; a; y)g(x; a; y)and Na f(x; a) = sup�2P0 Pa �(x; a)f(x; a). Because �(x; �) is a probability distribution forany given state x, N is a non-expansion and, thus, the convergence of the associated Q-learning algorithm follows from the arguments in Section 4.1. As a result, John's learningrule gives the optimal policy under the revised optimality criterion.11



4.5 MODEL-BASED METHODSThe de�ning assumption in reinforcement learning is that the reward and transition func-tions, R and P , are not known in advance. Although Q-learning shows that optimal valuefunctions can be estimated without ever explicitly learning R and P , learning R and P makesmore e�cient use of experience at the expense of additional storage and computation [15].The parameters of R and P can be learned from experience by keeping statistics for eachstate-action pair on the expected reward and the proportion of transitions to each nextstate. In model-based reinforcement learning, R and P are estimated on-line, and the valuefunction is updated according to the approximate dynamic-programming operator derivedfrom these estimates. Theorem 1 implies the convergence of a wide variety of model-basedreinforcement-learning methods.The dynamic-programming operator de�ning the optimal value for generalized mdps isgiven in Equation 2. Here we assume that L may depend on P and/or R, but N may not.It is possible to extend the following argument to allow N to depend on P and R as well. Inmodel-based reinforcement learning, R and P are estimated by the quantities Rt and Pt, andLt is an estimate of the L operator de�ned using Rt and Pt. As long as every state-actionpair is visited in�nitely often, there are a number of simple methods for computing Rt andPt that converge to R and P . A bit more care is needed to insure that Lt converges toL, however. For example, in expected-reward models,Ly g(x; a; y) = Py P (x; a; y)g(x; a; y)and the convergence of Pt to P guarantees the convergence of Lt to L. On the otherhand, in a risk-sensitive model, Ly g(x; a; y) = miny:P (x;a;y)>0 g(x; a; y) and it is necessary toapproximate P in a way that insures that the set of y such that Pt(x; a; y) > 0 convergesto the set of y such that P (x; a; y) > 0. This can be accomplished easily, for example, bysetting Pt(x; a; y) = 0 if no transition from x to y under a has been observed.Assuming P and R can be estimated in a way that results in the convergence of Lt toL, the approximate dynamic-programming operator Tt de�ned by([TtU ]V )(x) = ( Na �Rt(x; a) + Lty V (y)� ; if x 2 �tU(x); otherwise,converges to T with probability 1 uniformly. Here, the set �t � S represents the set of stateswhose values are updated on step t; one popular choice is to set �t = fxtg.The functions Gt(x) = ( 0; if x 2 �t;1; otherwise,and Ft(x) = ( ; if x 2 �t;0; otherwise,satisfy the conditions of Theorem 1 as long as each x is in in�nitely many �t sets (Condition 3)and the discount factor  is less than 1 (Condition 4).As a consequence of this argument and Theorem 1, model-based methods can be usedto �nd optimal policies in mdps, alternating Markov games, Markov games, risk-sensitivemdps, and exploration-sensitive mdps. Also, if Rt = R and Pt = P for all t, this resultimplies that real-time dynamic programming converges to the optimal value function [1].12



5 CONCLUSIONSIn this paper, we presented a generalized model of Markov decision processes, and provedthe convergence of several reinforcement-learning algorithms in the generalized model.Other Results We have derived a collection of results [28] for the generalized mdp modelthat demonstrate its general applicability: the Bellman equations can be solved by valueiteration; a myopic policy with respect to an approximately optimal value function givesan approximately optimal policy [34, 9]; when N has a particular \maximization" prop-erty, policy iteration converges to the optimal value function; and, for models with �nitestate and action spaces, both value iteration and policy iteration identify optimal policies inpseudopolynomial time.Related Work The work presented here is closely related to several previous researche�orts. Szepesv�ari [27] described a related generalized reinforcement-learning model, andpresented conditions under which there is an optimal (stationary) policy that is myopic withrespect to the optimal value function.Jaakkola, Jordan, and Singh [10] and Tsitsiklis [31] developed the connection betweenstochastic-approximation theory and reinforcement learning in mdps. Our work is similarin spirit to that of Jaakkola, et al. We believe the form of Theorem 1 makes it particularlyconvenient for proving the convergence of reinforcement-learning algorithms; our theoremreduces the proof of the convergence of an asynchronous process to a simpler proof of con-vergence of a corresponding synchronized one. This idea enables us to prove the convergenceof asynchronous stochastic processes whose underlying synchronous process is not of theRobbins-Monro type (e.g., risk-sensitive mdps, model-based algorithms, etc.).Future Work There are many areas of interest in the theory of reinforcement learningthat we would like to address in future work. The results in this paper primarily concernreinforcement-learning in contractive models ( < 1 or all-policies-proper), and there are im-portant non-contractive reinforcement-learning scenarios, for example, reinforcement learn-ing under an average-reward criterion [22, 14]. It would be interesting to develop a TD(�)algorithm [25] for generalized mdps; this has already been done for mdps [17]. Theorem 1 isnot restricted to �nite state spaces, and it might be valuable to prove the convergence of areinforcement-learning algorithm for a in�nite state-space model.Conclusion By identifying common elements among several reinforcement-learning sce-narios, we created a new class of models that generalizes existing models in an interestingway. In the generalized framework, we replicated the established convergence proofs forreinforcement learning in Markov decision processes, and proved new results concerningthe convergence of reinforcement-learning algorithms in game environments, under a risk-sensitive assumption, and under an exploration-sensitive assumption. At the heart of ourresults is a new stochastic-approximation theorem that is easy to apply to new situations.13
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