

OUTDOOR SMART DOG FEEDER

Electrical & Computer Engineering

Team 14: Lucas Duduit, T'Andra Newby, Haojiang Shi

April 30th, 2024

WHY DO WE NEED IT?

Feeding dogs on a timely manner can be hard. Overeating can occur if feeding amount is not controlled. Most dog feeders are indoors only.

OBJECTIVE

Desired amount of food will be accurately dispensed at feed time. The door will open at feed time when dog is within the range of the RFID communication. The feeder will operate outdoors without supplying power from the household.

HIGH LEVEL REQUIREMENTS

- Active RFID Communication
- Network Control
- Power Management

EVOLUTION OF DESIGN

INITIAL DESIGN

FINAL DESIGN

INITIAL DESIGN

FINAL BUILD

POWER MANAGEMENT

POWER USE AND PRODUCTION		ENERGY PER DAY
IDLE (24hr)	1.8 W	2.59 kJ
RUNNIG (max use	18.5 W	1.11 kJ
SOLAR (8 hr)	10 W	4.8 kj

CONTROL FLOWCHART

ן כ

CHALLENGES

RESULTS

USER INTERFACE

RFID PROGRAMING

// Include libraries
#include <RH_ASK.h>
#include <SPI.h>

const int FEED_TIME = 2; const int OPEN_LID = 3;

// Msg 2 size expected
const byte tamMsg2 = 4;

// Create ASK objects (Tx on pin 12 & Rx on pin 11)
RH_ASK driver;

void setup() {
Serial.begin(9600);
// Initialize object
driver.init();
pinMode(FEED_TIME, INPUT);
pinMode(OPEN_LID, OUTPUT);
digitalWrite(OPEN_LID, LOW);

void loop() {
 if(digitalRead(FEED_TIME)){ //pin is high from stm 32
 // Send message
 const char *msg1 = "RANGE";
 driver.send((uint8_t *)msg1, strlen(msg1));
 driver.waitPacketSent();
 Serial.print("Msg sent: ");
 Serial.println(msg1);
 delay(50);

// Receive msg from board 2
uint8_t msg2[tamMsg2];
uint8_t msg2Len = sizeof(msg2);

bool listened = false; int t = 0; while ((! listened) && (t < 15)) { listened = driver.recv(msg2, &msg2Len); t ++; delay(50);

if (listened) {
 if(msg2[0] == '0' && msg2[1] == 'P'){
 Serial.print("YAY\n");//set pin high for opening lid t
 digitalWrite(OPEN_LID, HIGH);
 // delay(1000);//idk how long
 // digitalWrite(OPEN_LID, LOW);

delay(500);
} else {
Serial.print("NOTHING");
digitalWrite(OPEN_LID, LOW);

else{ digitalWrite(OPEN_LID, LOW);

CONCLUSION

Achievements and Failures
Lessons Learned
Future Direction

QUESTIONS?

THANK YOU!

ELECTRICAL & COMPUTER ENGINEERING