

Mushroom Incubator

Electrical & Computer Engineering

ECE 445: Team 6 Elizabeth Boyer, Cameron Fuller, Dylan Greenhagen

April 29th, 2024

Problem Statement and Solution

What, Why, and the Current Market

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Problem Statement and Solution

Grow at your own risk!

- > Biological
- > Electrical
- > Overheating

... actually, just let us take care of it!

- Clean Air Filtration
- Electrical testing
- Sensor-Regulation
- Thermal Fault Max

Joel Orchard

Cost Analysis, Market Comparison

Ι

What's Available Now?

> Shrooly:

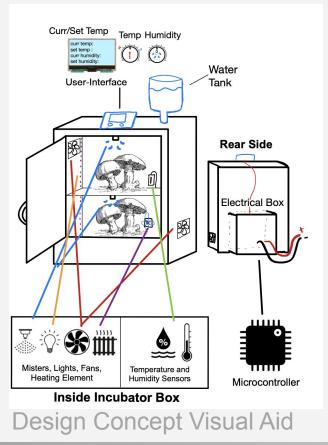
- **\$299**
- 15.2" x 12" x 7.5" (.78 Cubic Feet)
- No User Settings, Non-Expandable
- > The Mushroom Ecosphere 3.0: \$249.99
 - 29" X 20" X 63.5" (17.7 Cubic Feet)
 - User-Set Up
- Our Mushroom Incubator:
 - o **\$120**
 - 15" x 15" x 27" (3.5 Cubic Feet)
 - User-Settings, Expandable Design

https://shrooly.com/

Midwest Grow kit

Design and Modifications

High-Level Overview of Subsystems and Modifications Made


ELECTRICAL & COMPUTER ENGINEERING

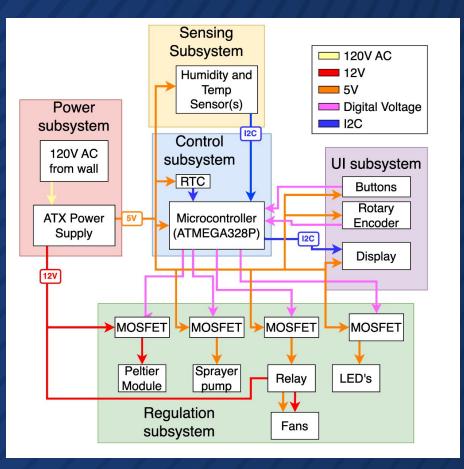
GRAINGER ENGINEERING

Product Design

Physical Design:

- > Sensing
- Regulation
- > UI
- > Control
- > Power

ELECTRICAL & COMPUTER ENGINEERING


Subsystems and Requirements

Subsystem Overview, Interactions, High-Level Requirements

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Subsystem Interactions: Sensing Subsystem Regulation Subsystem UI Subsystem Control Subsystem Power Subsystem

High-Level Requirements: Heating Cooling Humidity Lights Air Quality UI

ELECTRICAL & COMPUTER ENGINEERING

Modular Design and Testing

Separate design, testing, and functionality of subsystems

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Printed Circuit Board (Control Subsystem)

Design Choices: DIP vs SMD, test points **PCB Version 1**

- Minimalist setup to test functionality

PCB Version 2

- Buttons, knobs, screen organized for UI
- Fan control relay
- Screw terminals, power jack

No Major Development Issues

 Programming, display, I2C sensors all functional in each version

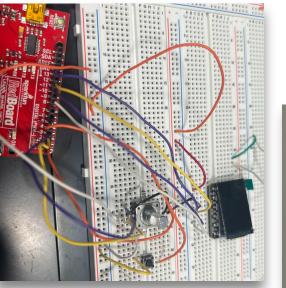
User-Interface

Design Choices: Rotary Encoders, I2C

UI Version 1

- Breadboarded with RedBoard with LCD screen alone

UI Version 2


- Expanded breadboard with a rotary encoder and button

UI Version 3

- Connected to PCB/ATMEGA328p

No Major Issues!

- Programming, display, I2C sensors all functional

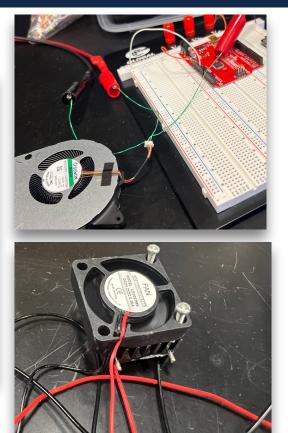
Regulation/Sensing Subsystem

Design Choices: Fan/Heater Size, Sprayer

Automation, Sensor Parameters

Regulation Subsystem Version 1

 Breadboarded with RedBoard and test programs


Regulation Subsystem Version 2

 larger fans, soft-interrupt based programming for reading sensors and activating fans/heater/lights

Regulation Subsystem Version 3

- Connected to PCB/ATMEGA328p

• - • T#1	screen /dev/tty.usbse
Temp *C = 30.21	Hum. $\% = 21.88$
Temp $*C = 30.26$	Hum. $\% = 21.79$
Temp *C = 30.34	Hum. % = 21.66
Temp *C = 30.41	Hum. % = 21.57
Temp *C = 30.47	Hum. $\% = 21.49$
Temp *C = 30.53	Hum. % = 21.31
Temp *C = 30.58	Hum. % = 21.24
Temp *C = 30.61	Hum. $\% = 21.14$
Temp *C = 30.65	Hum. % = 21.04
Temp *C = 30.72	Hum. % = 20.97
Temp *C = 30.75	Hum. % = 20.91
Temp *C = 30.78	Hum. % = 20.78
Temp *C = 30.79	Hum. % = 20.73
Heater Enabled State:	DISABLED
Temp *C = 30.78	Hum. $\% = 20.66$
Temp *C = 29.61	Hum. % = 22.19
Temp *C = 29.09	Hum. $\% = 24.63$
Temp *C = 28.73	Hum. % = 27.08
Temp *C = 28.45	Hum. % = 29.34
Temp $*C = 28.21$	Hum. $\% = 30.66$
Temp $*C = 28.03$	Hum. $\% = 31.07$
Temp $*C = 27.87$	Hum. $\% = 31.01$
Temp *C = 27.73	Hum. $\% = 30.64$
Temp *C = 27.63	Hum. % = 30.15

Power Subsystem

Design Choices: Desired Power Supply, Supply

Parameters

Power Version 1

 5V power supply and a 12V AC to DC adapter cable

Power Version 2

 700W ATX power supply provides both 5V and 12V constantly.


Putting it all together...

][

- Design Choices: Water Tank
- Placement, Power Subsystem
- Placement
- Version 1
 - Smaller TEC, 5V supply and adapter

Version 2

 Larger TEC, ATX power supply, insulation, PCB enclosure, wire management

Results

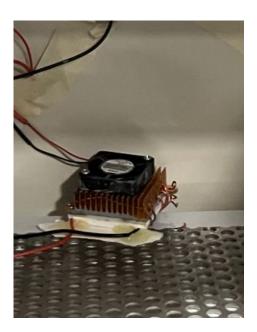
Qualitative and Quantitative Results, Successes, and Challenges

- ➤ User-controlled set points for temperature humidity
- Displays accurate time-of-day

R&V: Power Subsystem

- > System provides $5V(\pm 0.3V)$ up to 3.6A
- ➢ System provides 12V(±0.3V) up to 5A

R&V: Regulation Subsystem


- Heater and fans respond appropriately
 - Temperature adjusts at 1°F/min.
- Mister responds appropriately
 - Humidity increases at 1%/min,

decreases at 0.5%/min

R&V: Sensing Subsystem

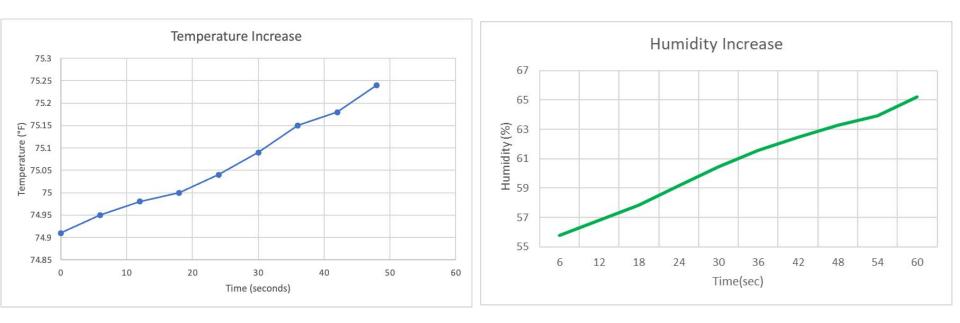
The sensors must both be able to withstand a temperature of 70-85°F and a humidity between 70-95% for prolonged periods.

It must be supplied 5V +/- 0.5V at .98mA.

- Knobs and buttons update set points
- Current temp and humidity displayed with set points

Results

Qualitative:


- All aspects of the project worked in the demo
- Temperature/Humidity control worked within our desired time constraints
- Ul subsystem was responsive
- \succ No major power shorts or other such issues.

Results

Quantitative:

Successes

- Project completed on time and under budget
- Useful feedback from TA's and Machine Shop

Challenges

- Peltier troubles
- Power supply troubles
- > Balance between updating UI frequently and keeping display clean
- ➤ Fan system from PWM to 2 power supplies

Conclusion

What We Learned:

- Improved ability to code in Arduino
- > Working with physical materials
- Interdisciplinary collaboration
- Mushroom growing practices

Future Work

Possible areas for improvement:

- > Improve waterproofing
- Stylize the appearance more
- > Improve insulation
- Improve water sprayer to provide a finer mist
- Contact marketing team

Thank you for coming to our presentation!

Thank you to Abhisheka, Professor Gruev, the machine shop, and the rest of the ECE 445 course staff for their advice and support.

Questions?

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

