
ECE 445: Senior Design Project Laboratory

Final Report

Oxygen Delivery Robot

Team 27
Sayankar, Rutvik

rutviks2@illinois.edu

Dunican, Aidan
dunican2@illinois.edu

Kalyniouk, Nazar
nazark2@illinois.edu

Teaching Assistant
Subramaniam, Selva
ss170@illinois.edu

May 1, 2024

Abstract

Mobile oxygen delivery is a mostly untapped market for users both elderly and young. This
report details a prototype design for a mobile oxygen delivery robot. We utilize a three
wheeled omni-directional drivetrain, ultra wideband triangulation, computer vision, and a
simple Roomba style bumper system. We remove ourselves from the context of dealing with
oxygen related tubing as swivel solutions already exist and focus on the issue of creating
a robot that can autonomously and efficiently move an oxygen tank around in an indoor
space.

Contents

1 Introduction 3
1.1 Project Overview . 3
1.2 Block Diagram . 4

1.2.1 Omniwheel Drivetrain System . 4
1.2.2 Ultra-Wideband Triangulation System 4
1.2.3 Close Range Object Detection System 4
1.2.4 Computer Vision System . 5
1.2.5 Control System . 5
1.2.6 Power System . 5

2 Design 6
2.1 Design Procedure . 6

2.1.1 Omniwheel Drivetrain System . 6
2.1.2 Ultra-Wideband Triangulation System 6
2.1.3 Close Range Object Detection System 7
2.1.4 Computer Vision System . 7
2.1.5 Control System . 8
2.1.6 Power System . 8

2.2 Design Details . 9
2.2.1 Omniwheel Drivetrain System . 9
2.2.2 RC Control . 10
2.2.3 Ultra-Wideband Triangulation System 10
2.2.4 Close Range Object Detection System 11
2.2.5 Computer Vision System . 11
2.2.6 Control System . 12
2.2.7 Power System . 13

3 Verification 14
3.1 Omniwheel Drivetrain System . 14
3.2 Ultra-Wideband Triangulation System . 14
3.3 Close Range Object Detection System . 14
3.4 Computer Vision System . 14
3.5 Control System . 14
3.6 Power System . 15

4 Costs 16

1

5 Conclusions 17
5.1 Ethics and Safety . 17

5.1.1 Ethical Considerations . 17
5.1.2 Safety Considerations . 17

6 Figures and Tables 19
6.1 Inverse Kinematics . 19
6.2 Double-sided Two Way Ranging . 20
6.3 Limit Switch Circuit . 21
6.4 Open CV Images . 22
6.5 Power Delivery . 23
6.6 UWB Triangulation . 24
6.7 Computer Vision Verification . 25
6.8 Control System Verification . 26
6.9 Power System Verification . 27
6.10 RC Controller . 28
6.11 STM32 Pinout . 29
6.12 STM32 Code . 30

A Appendix 34
A.1 Terms and Keywords . 34

2

1. Introduction

1.1 Project Overview

Children’s interstitial and diffuse lung disease (ChILD) is a collection of diseases or disorders.
These diseases cause a thickening of the interstitium (the tissue that extends throughout
the lungs) due to scarring, inflammation, or fluid buildup [1]. This eventually affects a
patient’s ability to breathe and distribute enough oxygen to the blood. Numerous children
experience the impact of this situation, requiring supplemental oxygen for their daily ac-
tivities. It hampers the mobility and freedom of young children, diminishing their growth
and confidence. Moreover, parents face an increased burden, not only caring for their child
but also having to be directly involved in managing the oxygen tank as their child moves
around.

Given the absence of relevant solutions in the current market, our project aims to ease
the challenges faced by parents and provide young children the freedom to explore their
surroundings without worry. As a proof of concept for an affordable solution, we propose a
three wheeled omni-directional mobile robot capable of supporting a filled M-6 oxygen tank.
We plan to implement two localization subsystems to ensure redundancy and enhance child
safety. The first subsystem utilizes Ultra-Wideband (UWB) transceivers for triangulating
the child’s location relative to the robot in indoor environments, this is similar to how
Apple AirTags triangulate their location relative to an iPhone [2] (although AirTags use a
combination of UWB and Bluetooth triangulation [3]). The second subsystem makes use of
a desktop web camera which streams video to a Raspberry Pi where it will leverage open-
source object tracking libraries to improve our directional accuracy in tracking a child. The
final subsystems will focus on close range object detection.

3

1.2 Block Diagram

Figure 1.1: High Level Block Diagram

1.2.1 Omniwheel Drivetrain System

We utilize a three wheeled omni-directional wheel drive train. In software we make use of
simple matrix multiplication (detailed in section 2.2.1) to derive individual wheel speeds
given that we know where we want to go in Cartesian space.

1.2.2 Ultra-Wideband Triangulation System

This system makes use of UWB transceivers in order to triangulate location in an indoor
space with high accuracy. The goal was to be able to locate the user in an indoor environment
where there maybe be interference with other bluetooth or wifi signals.

1.2.3 Close Range Object Detection System

The Close Range Object Detection subsystem makes use of limit switches with bumpers
attached to them arranged in a ring around the robot that will detect when it encounters
an object in its path. The goal of this system is to halt the robot and any further movement
when a limit switch is pressed. This enhances the safety of the robot, particularly in envi-
ronments with children. With the expectation that the robot will be utilized inside spaces
such as a living room which might have toys scattered around due to younger children being
present. To limit the scope of the project we want the robot to simply stop movement upon

4

collision with any object in it’s path and have either the user or a someone supervising come
in and clear the area before the robot is to be used again.

1.2.4 Computer Vision System

The Computer Vision subsystem was incorporated into our design to ensure redundancy and
robustness. By having a sensor fusion between this and the UWB subsystem, we can ensure
that the robot follows the child as desired and add an extra layer of redundancy and safety
to our design. The performance requirements of this subsystem are that this subsystem will
initiate a corrective measure to the STM32 microcontroller if the child deviates too far from
the center of the input frame. Specifically, this system focuses on the degrees away from
the center the user currently is. Between the start of this design and the end, nothing was
changed in the block level of this subsystem.

1.2.5 Control System

This system is purely regarding how the STM32 microcontroller interacts and controls all
our peripheral devices.

1.2.6 Power System

The power system of our robot was designed to take a 12V input and regulate it down to
the 5V and 3.3V rails that will be used by all devices on our PCB. Specifically, for our 3.3V
rail we needed to ensure a clean supply as it would be powering our STM32 microcontroller,
which will be generating all of our PWM signals and reading a lot of timer related signals
for which a clean 3.3V is preferred.

5

2. Design

2.1 Design Procedure

2.1.1 Omniwheel Drivetrain System

We utilize a three wheeled omni-directional wheel drive train. Chosen mainly due to the
cost benefit over a similar four wheeled drive train. This type of system is susceptible to
drift in the form of yaw, therefore we made sure to include feedback from encoders back
into our STM32 microcontroller to allow for drift compensation.

2.1.2 Ultra-Wideband Triangulation System

Our initial design discussion was regarding the type of wireless indoor localization we want
to design. Immediately, two types of communication came to mind: UWB and BLE. Ulti-
mately, we chose UWB over BLE due to the following benefits:

• Data transmission: UWB can transmit more data than Bluetooth Low Energy

• Accuracy: UWB can more accurately measure distance and determine position be-
cause it uses wideband radio waves and higher frequency bands

• Interference resistance: UWB is less likely to be affected by interference and obstruc-
tions

Localization Algorithms

To break it down simply, our goal was to find out the location of a user relative to our robot.
We assume the user and robot will be in a valid location in real world space, and therefore
can just focus on the user’s location relative to our robot.

To localize the user, we need to create a triangle of known lengths with vertices defined
by the UWB transceivers. To obtain the lengths of each side we need to perform some
ranging between the tag transceiver (the transceiver which the user will have) and the
anchor transceivers (which are mounted onto the robot). With the anchors being a set 18”
apart (the minimum as required by the DW3000 ICs we were using), we only needed the
remaining two sides of our triangle.

There are two ways to range between UWB transceivers. The first is to use Time of
Flight (ToF). ToF is a positioning method based on two-way ranging. That means the tag
needs to send and receive signals from the anchor several times and then the flight time of
the signal between the anchor and the tag can be measured, because radio waves travel at
the speed of light, we can calculate the distance between the tag and each anchor given that
we know how long it took for a signal to travel between them. Secondly, Time Difference of
Arrival (TDoA) is localization based on comparing the time difference between signals and

6

each anchor and this technique requires an accurate time synchronization function. When
using the TDoA method, the UWB tag will send out a poll message, and all the nearby
UWB anchors will receive it and record the arrival time. Because the location of anchors
is different, they will not receive the message at the same time. We can use these time
differences to determine the tag’s location.

Implementing an accurate time synchronization function between all of our transceivers
increases the complexity of the project ten-fold therefore we decided to use a ToF based
ranging method to calculate the distance between each anchor and the tag device.

2.1.3 Close Range Object Detection System

This system is the simplest but definitely required some debate in terms of how we wanted
it implemented. We debated between two main types of detection: simple limit switches
or ultrasonic sensors. Limit switches don’t require explanation, you activate a switch and
a signal goes high. The only struggle here would be finding a limit switch that would be
suitable for our needs. The alternative was ultrasonic detection which would have required
us to use a much larger number of sensors and which would have been much more sensitive.
The reason we decided to use limit switches was that they would only stop the robot when
an object collides with it. In addition, limit switches allow us to make a 360-degree bumper
for the robot with only 3 switches, which would fill in the gap between each wheel. To design
the subsystem we decided to go with the 3 Honeywell 101SN11 limit switches as they were
the best available limit switch in the ECE Self-service center (put simply, it was the only
limit switch that could take any sort of impact without damage). One of the major issues
we had when designing this subsystem was how to get the Honeywell limit switches to work.
Seeing as these limit switches have since been discontinued, finding proper documentation
on them proved to be difficult. We discovered that the output to the limit switches needed a
10k pull-up resistor in order to drive the output high when the limit switch is inactive. This
was all thanks to a helpful ebay seller who provided a simple explanation on the function of
some old limit switches he was selling (www.ebay.com/itm/333999755279).

2.1.4 Computer Vision System

Alternate approaches to incorporating person detection besides using a Haar cascade which
we ultimately chose are as follows.

• Histogram of Oriented Gradients (HOG)

• You Only Look Once (YOLO)

• Single Shot MultiBox Detector (SSD)

Haar cascade was chosen for our final implementation as it is simpler to implement
than conventional deep-learning models. It contains pre-trained full body models, a large
stepping stone which would be required for our project. For the Haar cascade algorithm, a
pre-trained model that detects full bodies is used. Once the body is detected, a bounding
box is drawn around the body. The center point of this box and the center point of the
screen are compared and this determines how far off the center the body is.

7

www.ebay.com/itm/333999755279

2.1.5 Control System

The details of the control system during design were fairly simple. It mainly consisted of
choosing a microcontroller and deciding what pins to assign where. We were limited by what
was provided by the ECE supply center, we decided to go with the F103 line of STM32 chips
as we believed it had the perfect amount of GPIO and timer pins required for our robot.
Our final pin assignments are shown in figure 6.23.

We required individual timers for the following:

• PWM output to motors (can all be synchronized therefore only need one timer)

• Motor 1 Encoder feedback

• Motor 2 Encoder feedback

• Motor 3 Encoder feedback

We required GPIO for the following:

• Limit switch bumper input

• USB lines

• SPI bus

• Chip select for 3 peripherals on the SPI bus

• High Speed External Crystal Oscillator input and output.

• Programmer pins

2.1.6 Power System

In our initial power design we had four requirements:

• Supply a max of 9 A at 12 V per motor therefore 27 A at 12 V

• Supply 5 V to supply around 3.5 A line to power items like a Raspberry Pi running
computer vision software, and two ESP32 boards that power the UWB transceiver
anchors on the robot, and some other miscellaneous 5V powered ICs throughout our
PCB.

• Supply 3.3 V at < 80 mA for our STM32.

We initially began with separate buck converters for each of our power rails. This original
design took up lots of space on our PCB and was unnecessary as we only needed one 5 V line
rated for higher current. After realizing that our selection of ESP32 boards and Raspberry
Pi’s do not have the option of power delivery through GPIO pins, we decided to use an
external battery pack to supply them power. But we opted to leave our higher current
buck converter in the design to leave headroom for the possibility of delivering power to
our Raspberry Pi and two ESP32 boards in the future. This led us to designing our final
power system which consisted of a 12 V to 5 V buck converter rated for up to 6 A. This was
followed with a 5 V to 3.3 V LDO to supply the power to our 3.3 V line. The reason we opted

8

to go with an LDO for the 3.3v was because it was supplying power to the microcontroller
which due to its sensitivity needed to be at a stable 3.3 V ideally without much noise.
By opting to go with an LDO we were able to lower the noise floor and improve the line
regulation of the supply going to the STM32 and hopefully improve the analog performance
of our microcontroller.

To further ensure the performance of the our analog pins in our microcontroller we
decided to make use a ferrite bead which suppresses high-frequency electronic noise in elec-
tronic circuits. Ferrite beads employ high-frequency current dissipation in a ferrite ceramic
to build high-frequency noise suppression devices.

2.2 Design Details

2.2.1 Omniwheel Drivetrain System

Inverse Kinematics of the OWB

In a three-wheeled omni-wheel robot, the three wheels are arranged in a triangular pattern,
with one wheel at the front and two wheels at the back. Each wheel has several small
omni-directional wheels arranged in a circular pattern, which allows the robot to move in
any direction.

To move the robot, each wheel is driven independently using a motor. By varying the
speed and direction of each wheel, the robot can move in any direction and rotate around
its center point.

The kinematics of a three-wheeled omni-wheel robot can be modeled mathematically the
below equations [4] which relate the robot’s linear and angular velocities to the speed and
direction of each wheel.

We first define for each wheel a direction of rotation Vi, and the resulting movement
effected in the x and y axes, Vix and Viy as shown below.

Knowing the angle of each wheel from the vertical axis, we can compute the x and y
components created by the rotation of each wheel. By summing these components together,
we can get the effective motion of the robot in the x, y and yaw axes.Vx

Vy

ω

 =

1 − 1
2 − 1

2

0 −
√
3
2

√
3
2

1 1 1

V1

V2

V3

Vx and Vy are the desired linear velocities in the x and y directions, respectively, and

omega is the desired angular velocity. V1, V2, and V3 are the velocities of the three wheels,
and L is the distance between the robot’s center of mass and the wheel axes.V1

V2

V3

 =

1 − 1
2 − 1

2

0 −
√
3
2

√
3
2

1 1 1

−1 Vx

Vy

ω

By taking the inverse of our 3x3 component coefficient matrix above, we can solve for

our individual motor speeds V1, V2 and V3, given the desired motion in terms of Vx, Vy, and
w.

9

2.2.2 RC Control

For drivetrain testing and part of our demo we used an RC controller. We made use of a
Flysky FS-i6 6CH 2.4GHz Radio System RC Transmitter Controller with FS-iA6 Receiver
(6.22). While the receiver supports up to six channels, the OWB only needs three channels.

The OWB can move forward and backward like a normal RC car. This motion is
represented by Vy, and is mapped to CH1 on the transmitter. While a normal RC car needs
a Vy component to turn left or right, the OWB can ”yaw” on the spot. This is represented
by w, and is mapped to CH3 on the transmitter. The final unique motion the OWB can
execute is a ”drift” toward the left or right. This motion is represented by Vx and is mapped
to CH2 on the transmitter.

Thus, using these three channels, the operator can define the robot’s desired Vx, Vy, and
w. These desired motion vectors are then fed to our inverse kinematics algorithm, which
breaks down our desired motion into an individual wheel speed and direction for each motor.

2.2.3 Ultra-Wideband Triangulation System

The UWB triangulation utilizing double sided two way ranging between the tag device which
will be attached to the user. This tag will performing this ranging calculation with each tag
device, therefore deriving the lengths of each side of our localization triangle.

Symmetrical double-sided two-way ranging

Symmetrical double-sided two-way ranging (SDS-TWR) is a ranging method that uses two
delays that naturally occur in signal transmission to determine the range between two sta-
tions [5].

Signal Propagation Delay

When a test packet is transmitted from station A to station B, the propagation delay can
be calculated. As the packet travels through space, the difference in time is calculated from
when it’s sent from the transmitter to the receiver. This time delay is known as the signal
propagation delay.

Processing Delay

Following the transmission between station A and station B, station A waits for an ac-
knowledgement from station B. Once station A takes a known amount of time to process
the test packet, it generates an acknowledgement and prepares it for transmission. The time
it requires to process the acknowledged message is referred to as the processing delay.

Range Calculation

The signal propagation delay and the processing delay are encapsulated in the acknowledg-
ment sent back to station A. On this acknowledgment, station A computes another signal
propagation delay. These three values are then used by the algorithm to calculate the range
between station A and station B.

10

Verifying Range Calculation

To verify the accuracy of the previous range calculation, station B sends a test packet to
station A and station A sends an acknowledgement to station B once it receives the signal.
By repeating this procedure, the two range values are determined and an average can be
calculated to verify the accuracy of the distance measurement between these two stations

2.2.4 Close Range Object Detection System

Once the Honeywell 101SN11 limit switch is pressed it drives the output voltage low. This
signal is pulled high with a 10 kΩ resistor (refer to figure 6.4). Then fed directly to the
CD74HC00N four channel two input NAND gate in order to invert the signal to high when
the switch is pressed. From there the 3 inverted limit switch signals are passed on to a 3
input OR gate which combines the inputs into one single output, which is high when any
limit switch is pressed. Next the output is passed to the one of the STM32’s FT (5 V
tolerant) pins and which triggers an interrupt that will stop the PWM signals that drive
the motors from being generated. This in turn halts the motors placing the robot in an idle
state until the limit switch is unpressed and the robot is reset.

2.2.5 Computer Vision System

For the software portion of this subsystem, the OpenCV code was written. Figure 6.6
provides an overview of how the algorithm works.

To test the pre-trained Haar cascade classifier, the code was tested with an input image
of a child walking down a hallway.

When the body is detected, the distance is found between the center of the body and
the center of the image. A distance is calculated by subtracting the two center points and
dividing that number by the number of pixels on the screen. A message will be printed
to inform the user if the off-center variable is large enough to where a correction will be
needed. If no person is detected, a message will be printed. If this value is larger than 9%,
a correction will be made. This initial calculator can be seen below. Later testing with the
webcam will confirm whether this value is reasonable or will need to be adjusted. Some
helpful design parameters regarding this calculation are as follows:

• Resolution of Camera = 1600 ∗ 1200 pixels

• FOV of Camera = 75 degrees

• Average Shoulder Width of Child = 9 inches = 0.23 m

We expect the child will be a distance of 1 m± 25% (0.75 m to 1.25 m) away from the
robot. Figure 6.8 is an image of the minimum and maximum ranges. The red boxes are
used to represent the width of the child. To calculate how much of the screen the child will
take up, we must first calculate the horizontal width of the FOV 6.9. This is done by using
simple trigonometry.

Calculating horizontal FOV width:

Half of FOV = (
75◦

2
= 37.5◦)

x = (1 meter)× tan(37.5◦) = 0.767 meters

11

Now, multiply this distance by 2, and the result is the horizontal FOV width.
Horizontal FOV Width = 0.767 meters× 2 = 1.534 meters
Now to calculate how much of the screen the target takes up with the current values.

Percent of screen =
Average Shoulder Width of Child

Horizontal FOV Width
= 15%

Since we want to stay within this range, the tolerance for the Percent of Screen taken
up by the child will be 15%± 3%. The center of the child and the center of the screen will
be compared to determine if a correction will be made. Therefore, we divide 15% by 2% to
get 7.5% and add 1.5% to that value, so if the difference between the two midpoints is more
than 9%, then a correction will be made.

With input images working, we tested the code with a video input from the web camera.
Using similar code as before, it was modified to capture frames from a live video stream.
First, we used a MacBook Pro web camera as we tested our code in a jupyter notebook,
then went on to use the Logic Pro 9000 web camera. Similar to before, when a full body
is detected, a bounding box is drawn around the person. The offset was calculated and
printed on the screen.

This code was modified further to ensure that there are no error detections. This was
done by checking for the largest body in the frame so that no accidental object in the
background would be flagged as a body. This greatly increased the accuracy of the detection
and helped to only draw a bounding box around the body.

Originally, our intention was to flash an SD card with an operating system to download
OpenCV on a Raspberry Pi 3 Model B. However, we encountered difficulties when attempt-
ing to boot it. Despite multiple troubleshooting attempts, this issue persisted so we opted
to utilize a spare Raspberry Pi 3 Model A+. This model was compatible with the flashed
SD card and allowed us to continue. While this issue was resolved, issues arose when trying
to download OpenCV. Since this was a slightly older model than the previous Raspberry
Pi, the limited RAM struggled to download OpenCV since it is very resource intensive. Due
to time constraints and the fact that this wasn’t one of the high-level requirements, efforts
were focused on ensuring our high-level requirements were met. In the future, a stronger
Raspberry Pi, such as the Raspberry Pi 4, would be a better option.

If OpenCV were to work on the Raspberry Pi, the next step would’ve been to set up
communication between the Raspberry Pi and STM32 over SPI. Once communication was
established, a sensor fusion of the computer vision and ultra-wideband sensors. This would
ensure the desired child-tracking that we would want our omni wheel robot to exhibit.

2.2.6 Control System

The pinout of our STM32 was detailed in figure 6.23. We implemented system interrupts
as shown in figure 6.24.

In order to setup our SPI bus we took a register setting approach. Therefore, we write
and access registers directly to read SPI bus data, enable and write to the bus.

See figures 6.25, 6.26, 6.27, 6.28 and 6.29 for a brief overview of the setup within the
STMCubeIDE. Comments are also included within the code which help describe the process.
You can also refer to figure 6.30 for detail on how the motor control through PWM was
setup.

12

2.2.7 Power System

Our system is powered from a 2200mAh battery (which we later acknowledge was a limiting
factor in our final performance). To prevent excessive current draw from our motors and
ensure that we have a method in hardware that prevents the motors running at full power,
we integrated 9 A PTC Resettable Fuses on each power line connected to a motor. PTC fuses
are made of a material that increases its internal resistance as the temperature increases,
therefore if we are drawing too much current we increase the resistance on the line and reduce
the current being supplied to the motors. Once the current or high temperature is removed,
the polymer cools and returns to its original state, restoring the fuse to a low-resistance
state.

From there the 12 V from the battery is stepped down to 5 V by our buck converter
(6.10). We opted to go for a 6 A buck converter in order to allow for the possibility of
directly powering the Raspberry Pi and UWB subsystem from the board without needed a
redesign of the power system.

After the battery voltage is dropped down to 5 V it is dropped down again to 3.3 V
through an LDO (6.11). This 3.3 V is used to power the STM32 which is the main processor
of our robot. We chose to go with an LDO due to its lowered noise floor compared to a
buck converter and better line regulation which will ensure that the voltage of the STM32
is kept constant and will not be affected by any supply noise that could result negatively
impact our sensitive analog processing.

Another helpful debugging feature of our power subsystem is the addition of a jumper
connector that allows for us to choose how to supply 5 V to our board. This was added in
order to allow us to be debug our microcontroller and any peripherals without needed to
power the motors. We provided the option to select to supply 5 V from the 12 V to 5 V
buck converter, an external 5 V source, or through the USB Micro B port that was included
on the board.

13

3. Verification

3.1 Omniwheel Drivetrain System

For our OWB drivetrain our goal was to reliably set the speed and control RPM of motors.
Following that, we wanted to maintain speed of 3 MPH under full load.

We could tell from our encoder feedback that we were able to control with RPM, and
unfortunately without a bigger battery we couldn’t test the max speed of the robot. But
without a bigger battery we were able to clearly move the robot in a desired direction but
not move over 3 MPH.

3.2 Ultra-Wideband Triangulation System

For the UWB triangulation our goal was to utilize ToF to create a triangle of known lengths
with vertices defined by each UWB transceiver. We tested creating a large triangle and
comparing the serial read out to the read world distances. We also tested closer distances
with a ruler. For all of our verification we were within tolerance.

3.3 Close Range Object Detection System

In order to verify our close range object detection subsystem we included a test point on
the output of the OR gate (6.5) which allowed us to be able to check the voltage level going
into the STM32 when the limit switches were pressed.

3.4 Computer Vision System

A requirement of the Computer Vision subsystem was to utilize OpenCV or OpenPose to
determine the angle of the child respective of the robot. To verify this requirement, the
Raspberry Pi must be plugged into the monitor and display the video feed with an overlaid
box over the body. In addition to this overlay, a value would be shown to represent how
far off the body is from the center of the screen. As seen in figure 6.17, this verification is
fulfilled therefore confirming that this requirement was successfully implemented.

3.5 Control System

When connecting all of our peripherals together while our STM timers are active and trying
to control the motors, we run into some issues with our SPI bus. We occasionally skip bits,
refer to figure 6.18.

14

3.6 Power System

In order to be able to appropriately test our power system we included test points attached
at the output of each voltage line to make it easier for us to validate. Starting off with our
12 V line we receive a voltage that is around 12 V ± 5% which is clearly showing in the
figure 6.19.

Next with our 5 V line we wanted to achieve a similar margin of ±5% which we were
able to achieve as shown in figure 6.20.

Lastly, we also had a test point for our 3.3 V line which similarly we wanted to have a
margin of ±5% which was met with a significantly lower margin as seen in figure 6.21.

15

4. Costs

Labor costs for each team member is calculated with the following equation

Estimated hourly rate ∗ actual hours spent = individual labor cost (4.1)

Given current ECE graduate pay, this cost comes out to

$44/hr ∗ 137 hrs = $6028/person

$6028/person ∗ 3 team members = $18084

Labor costs for each the machine shop is calculated using equation 4.1. Estimating the
average pay for the ECE machine shop worker, this cost comes out to

$60/hr ∗ 40 hrs = $2400

With that in mind, the robot cost is roughly as follows.

Item Quantity Cost

PCB BOM 1 $62.03
PCB Manufacturing 1 $40.38
3D Printed Parts 1 $5
Omni-Wheels 3 $78
Modern Robotics 12VDC Motor 3 $44.97
4-Pos JST PH to 4-Pos JST XH Adaptor (Encoders) 4 $11.56
Victor 888 Speed Controller 3 $149.97
QuickCam Pro 9000 Webcam 1 $74.99
ESP32UWB DW3000 (Ultra-Wideband transceiver) 3 $131.40
Raspberry Pi 4 1GB Model B 1 $35
Machine Shop Parts - $74
Robot Subtotal - $707.30
Machine Shop Labor - $2400
Team Member Labor - $18084
Total $21191.30

Figure 4.1: Cost Breakdown

16

https://www.andymark.com/products/4-in-duraomni-wheel
https://www.gobilda.com/modern-robotics-12vdc-motor/
https://www.gobilda.com/4-pos-jst-ph-mh-fc-to-4-pos-jst-xh-mh-fc-adaptor-150mm-length/
https://www.team358.org/files/programming/ControlSystem2015-2019/specs/217-2769-Victor888UserManual.pdf
https://www.amazon.com/Logitech-Internet-Camera-2-0-Megapixel-Resolution/dp/B000RZQZM0
https://www.makerfabs.com/esp32-uwb-dw3000.html
https://vilros.com/products/raspberry-pi-4-model-b

5. Conclusions

This project has effectively fulfilled the high-level requirements we proposed at the beginning
of the semester. Key successes include the drive train, the UWB localization, and close-
range object detection. These objectives have been successfully achieved as outlined in the
previous section’s R & V tables. Some challenges that we faced were the small battery
size preventing a sufficient current supply for extended use, SPI bus timing was sometimes
skipping bits and prevented reliable communication between peripherals, we would have
liked to print a full 360-degree bumper if we have a larger 3D printer. Further work would
include allocating more time for SPI bus debugging and choosing a larger battery.

5.1 Ethics and Safety

5.1.1 Ethical Considerations

As we continue through the development of our project, we are unwavering in our dedication
to abide by the ethical and safety principles outlined by the Association for Computing
Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE). As we
embark on this project, we pledge our commitment to adhere to these standards, ensuring
that our actions and choices uphold the highest level of professionalism and integrity.

As outlined in Section I of the IEEE Code of Ethics, we pledge to “uphold the highest
standards of integrity, responsible behavior, and ethical conduct in professional activities”
[6]. We will prioritize safety in our design and adhere to ethical design practices. Educating
the parents and caregivers about the robot’s use and limitations will allow for informed
decision-making. Following relevant laws and regulations regarding this technology will also
be a high priority.

In the same Code of Ethics, outlined in Section III, we pledge to “strive to ensure this
code is upheld by colleagues and co-workers” [6]. We will support each other in ethical
conduct and foster a culture of ethical behavior. Open communication will be established
and encouraged to raise concerns and provide guidance to team members.

5.1.2 Safety Considerations

This project aligns with the safety principles outlined in the ACM Code of Ethics and
Professional Conduct. Safety remains our number one priority and as outlined in Section 1.2
[7], we will avoid negative consequences, especially when those consequences are significant
and unjust. We will take careful consideration of potential impacts and minimize harm. In
the context of this project, we will ensure that the robot’s design and operation prioritizes
safety, especially to the children this product aims to assist. We will work to analyze
potential risk and consider the robot’s mobility and interaction with its environment.

17

As well as promoting safety, privacy is also a very important guideline that will be
followed, which is outlined in Section 1.6. As professionals, we must safeguard the personal
information of our users, especially if it involves children. As it relates to this project, we
will ensure that no data will be collected and stored in an external location. Data collection
will be minimized to only what is necessary for the robot to operate.

One aspect of our project where safety must be considered is regarding the use of lithium
batteries. We acknowledge the potential risks associated with the misuse of lithium batteries.
We are committed to following the safety guidelines associated with the batteries we plan
on using. More specifically, maintaining the battery’s temperature within the recommended
range. Also, we are dedicated to the responsible disposal of batteries to ensure sustainability.

Since we are incorporating motors into our design, we will deploy essential control sys-
tems to mitigate potential hazards such as collisions with the environment. Safe operation
will be ensured with the use of sensors, vision systems, and warning systems.

18

6. Figures and Tables

6.1 Inverse Kinematics

Figure 6.1: Vector Definitions Figure 6.2: OWB drive vectors [8]

19

6.2 Double-sided Two Way Ranging

Figure 6.3: Symmetrical Double-sided Two-way Ranging

20

6.3 Limit Switch Circuit

Figure 6.4: Limit Switch Circuit

Figure 6.5: PCB OR3 Test Point

21

6.4 Open CV Images

Figure 6.6: OpenCV Algorithm Flowchart

Figure 6.7: OpenCV Performance Test

22

Figure 6.8: Percent of screen calculations
for OpenCV algorithm

Figure 6.9: Calculation of
Horizonatal FOV Width

6.5 Power Delivery

Figure 6.10: 5 V 6 A Buck Converter

23

Figure 6.11: 3.3 V Low Dropout Regulator

6.6 UWB Triangulation

Figure 6.12: UWB Triangle Laid out Figure 6.13: UWB Serial Read Out

Figure 6.14: UWB Triangle with Distances

24

Figure 6.15: 45” Ruler between UWB
Transceiver

Figure 6.16: UWB Serial
Read Out

6.7 Computer Vision Verification

Figure 6.17: Computer Vision Verification

25

6.8 Control System Verification

Figure 6.18: SPI Bus Skipping Bits

26

6.9 Power System Verification

Figure 6.19: 12 V Power
Line

Figure 6.20: 5 V Power
Line

Figure 6.21: 3.3 V Power
Line

27

6.10 RC Controller

Figure 6.22: Channel Distribution

28

6.11 STM32 Pinout

Figure 6.23: STM32F103C8T6 Pinout

29

1 void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {

2 if((GPIO_Pin == GPIO_PIN_9)) {

3 if((HAL_GPIO_ReadPin(GPIOB , GPIO_PIN_9) == GPIO_PIN_SET)){

4 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_1);

5 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_2);

6 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_3);

7 }

8 }

9 else{

10 __NOP();

11 }

12 }

Figure 6.24: Limit Switch Interrupt Functionality

1 void SPIConfig (void){

2 RCC ->APB2ENR |= (1<<12); // Enable SPI1 CLock

3 SPI1 ->CR1 |= (1<<0)|(1<<1); // CPOL=1, CPHA=1

4 SPI1 ->CR1 |= (1<<2); // Master Mode

5 SPI1 ->CR1 |= (3<<3); // BR[2:0] = 011: fPCLK/16, PCLK2 = 80MHz ,

SPI clk = 5MHz

6 SPI1 ->CR1 &= ~(1<<7); // LSBFIRST = 0, MSB first

7 SPI1 ->CR1 |= (1<<8) | (1<<9); // SSM=1, SSi=1 -> Software Slave

Management

8 SPI1 ->CR1 &= ~(1<<10); // RXONLY = 0, full -duplex

9 SPI1 ->CR1 &= ~(1<<11); // DFF=0, 8 bit data

10 SPI1 ->CR2 = 0;

11 }

Figure 6.25: SPI Config Setup

6.12 STM32 Code

30

1 void SPI_Transmit (uint8_t *data , int size){

2

3 /* ************* STEPS *****************

4 1. Wait for the TXE bit to set in the Status Register

5 2. Write the data to the Data Register

6 3. After the data has been transmitted , wait for the BSY bit to

reset in Status Register

7 4. Clear the Overrun flag by reading DR and SR

8 *** */

9

10 int i=0;

11 while (i<size){

12 while (!((SPI1 ->SR)&(1<<1))) {}; // wait for TXE bit to set ->

This will indicate that the buffer is empty

13 SPI1 ->DR = data[i]; // load the data into the Data Register

14 i++;

15 }

16

17 /* During discontinuous communications , there is a 2 APB clock period

delay between the

18 write operation to the SPI_DR register and BSY bit setting. As a

consequence it is

19 mandatory to wait first until TXE is set and then until BSY is

cleared after writing the last

20 data.

21 */

22 while (!((SPI1 ->SR)&(1<<1))) {}; // wait for TXE bit to set ->

This will indicate that the buffer is empty

23 while (((SPI1 ->SR)&(1<<7))) {}; // wait for BSY bit to Reset ->

This will indicate that SPI is not busy in communication

24
25 // Clear the Overrun flag by reading DR and SR

26 uint8_t temp = SPI1 ->DR;

27 temp = SPI1 ->SR;

28 }

Figure 6.26: SPI Transmit Setup

31

1 void SPI_Receive (uint8_t *data , int size){

2 /* ************* STEPS *****************

3 1. Wait for the BSY bit to reset in Status Register

4 2. Send some Dummy data before reading the DATA

5 3. Wait for the RXNE bit to Set in the status Register

6 4. Read data from Data Register

7 *** */

8

9 while (size){

10 while (((SPI1 ->SR)&(1<<7))) {}; // wait for BSY bit to Reset ->

This will indicate that SPI is not busy in communication

11 SPI1 ->DR = 0; // send dummy data

12 while (!((SPI1 ->SR) &(1<<0))){}; // Wait for RXNE to set -> This

will indicate that the Rx buffer is not empty

13 *data++ = (SPI1 ->DR);

14 size --;

15 }

16 }

Figure 6.27: SPI Receive Setup

1 void GPIOConfig (void){

2 RCC ->APB2ENR |= (1<<2); // Enable GPIOA clock

3 GPIOA ->CRL = 0;

4 GPIOA ->CRL |= (11U<<20); // PA5 (SCK) AF output Push Pull

5 GPIOA ->CRL |= (11U<<28); // PA7 (MOSI) AF output Push Pull

6 GPIOA ->CRL |= (1<<26); // PA6 (MISO) Input mode (floating)

7 GPIOA ->CRL |= (3<<16); // PA4 used for CS , GPIO Output

8 }

Figure 6.28: SPI GPIO Chip Select Setup

1 void SPI_Enable (void){

2 SPI1 ->CR1 |= (1<<6); // SPE=1, Peripheral enabled

3 }

4

5 void SPI_Disable (void){

6 SPI1 ->CR1 &= ~(1<<6); // SPE=0, Peripheral Disabled

7 }

8
9 void CS_Enable (void){

10 GPIOA ->BSRR |= (1<<9) <<16;

11 }

12

13 void CS_Disable (void){

14 GPIOA ->BSRR |= (1<<9);

15 }

16
17 uint8_t RxData [3]; // receive SPI data bytes

Figure 6.29: SPI Enable and Disable Setup

32

1 // Maps PWM speed between a range

2 uint32_t MAP(uint32_t au32_IN , uint32_t au32_INmin , uint32_t

au32_INmax , uint32_t au32_OUTmin , uint32_t au32_OUTmax){

3 return ((((au32_IN - au32_INmin)*(au32_OUTmax - au32_OUTmin))/(

au32_INmax - au32_INmin)) + au32_OUTmin);

4 }

5

6 // Maps speed between a limit

7 int mapChannel(int speed , int minLimit , int maxLimit){

8 return MAP(speed , -20, 20, minLimit , maxLimit);

9 }

10

11 // PWM Timer Setup

12 MX_TIM1_Init (); // Initialize all configured peripherals

13

14 HAL_TIM_PWM_Start (&htim1 , TIM_CHANNEL_1); // Setting up PWM Timer

15 HAL_TIM_PWM_Start (&htim1 , TIM_CHANNEL_2); // Setting up PWM Timer

16 HAL_TIM_PWM_Start (&htim1 , TIM_CHANNEL_3); // Setting up PWM Timer

17
18 HAL_TIM_Encoder_Start_IT (&htim2 , TIM_CHANNEL_ALL); // Setting up

Encoders

19 HAL_TIM_Encoder_Start_IT (&htim3 , TIM_CHANNEL_ALL);

20 HAL_TIM_Encoder_Start_IT (&htim4 , TIM_CHANNEL_ALL);

21

22 while (1){

23 htim1.Instance ->CCR1 = mapChannel(M1_Speed , 1100, 1884); // current

, minimum , maximum , default

24 htim1.Instance ->CCR2 = mapChannel(M2_Speed , 1100, 1884);

25 htim1.Instance ->CCR3 = mapChannel(M3_Speed , 1100, 1884);

26

27 HAL_Delay (3000);

28 }

Figure 6.30: PWM Setup and Motor Control

33

A. Appendix

A.1 Terms and Keywords

• ChILD - Children’s Interstitial and Diffuse Lung Disease

• PCB – Printed Circuit Board

• OWB - Three-Wheeled Omni-Wheel Bot

• UWB - Ultra-wideband is a radio technology that can use a very low energy level
for short-range, high-bandwidth communications over a large portion of the radio
spectrum.

• ESP32 - A series of low-cost, low-power system-on-a-chip microcontrollers with inte-
grated Wi-Fi and dual-mode Bluetooth.

• RPM - Revolutions per minute

• GPIO - General-purpose input/output

• SPI - Serial Peripheral Interface

• PWM - Pulse-width modulation

• MPH - Miles per hour

• OpenCV - (Open Source Computer Vision Library) is an open source computer vision
and machine learning software library.

• TDoA - Time Difference of Arrival

• ToF - Time of Flight

• BOM - Bill of materials

• BLE - Bluetooth Low Energy

• LDO - Low Dropout Voltage Regulator

• PTC - Positive Temperature Coefficient, PTC fuses are made of a material that in-
creases its internal resistance as the temperature increases.

34

Bibliography

[1] “Childhood interstitial lung disease,” Mar 2022. [Online]. Available: https:
//www.nhlbi.nih.gov/health/childhood-interstitial-lung-diseases

[2] “Ultra wideband,” Mar 2023. [Online]. Available: https://discussions.apple.com/
thread/254750118?sortBy=best

[3] “Find your keys, backpack, and more with airtag and find my,” Feb 2024. [Online].
Available: https://support.apple.com/en-us/109021

[4] R. T. Yunardi, D. Arifianto, F. Bachtiar, and J. I. Prananingrum, “Holonomic imple-
mentation of three wheels omnidirectional mobile robot using dc motors,” vol. 2, no. 2,
2021, pp. 65–71.

[5] I. C. Society, “Wireless medium access control (mac) and physical layer (phy) speci-
fications for low-rate wireless personal area networks (lr-wpans),” IEEE Standard for
Information technologyTelecommunications and information exchange between systems,
vol. 802, no. 15.4a, 2006.

[6] “Ieee code of ethics,” Jun 2020. [Online]. Available: https://www.ieee.org/about/
corporate/governance/p7-8.html

[7] “Acm code of ethics and professional conduct,” Jun 2018. [Online]. Available:
https://www.acm.org/code-of-ethics

[8] M. Wada and T. Hirama, “Research for an omnidirectional mobile robot using acrobat,
the active-caster with a dual-ball transmission,” Transactions of the Society of Instru-
ment and Control Engineers, vol. 51, pp. 400–408, 2015.

35

https://www.nhlbi.nih.gov/health/childhood-interstitial-lung-diseases
https://www.nhlbi.nih.gov/health/childhood-interstitial-lung-diseases
https://discussions.apple.com/thread/254750118?sortBy=best
https://discussions.apple.com/thread/254750118?sortBy=best
https://support.apple.com/en-us/109021
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

	Introduction
	Project Overview
	Block Diagram
	Omniwheel Drivetrain System
	Ultra-Wideband Triangulation System
	Close Range Object Detection System
	Computer Vision System
	Control System
	Power System

	Design
	Design Procedure
	Omniwheel Drivetrain System
	Ultra-Wideband Triangulation System
	Close Range Object Detection System
	Computer Vision System
	Control System
	Power System

	Design Details
	Omniwheel Drivetrain System
	RC Control
	Ultra-Wideband Triangulation System
	Close Range Object Detection System
	Computer Vision System
	Control System
	Power System

	Verification
	Omniwheel Drivetrain System
	Ultra-Wideband Triangulation System
	Close Range Object Detection System
	Computer Vision System
	Control System
	Power System

	Costs
	Conclusions
	Ethics and Safety
	Ethical Considerations
	Safety Considerations

	Figures and Tables
	Inverse Kinematics
	Double-sided Two Way Ranging
	Limit Switch Circuit
	Open CV Images
	Power Delivery
	UWB Triangulation
	Computer Vision Verification
	Control System Verification
	Power System Verification
	RC Controller
	STM32 Pinout
	STM32 Code

	Appendix
	Terms and Keywords

