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Abstract

The Precision Dumbbell Assistant is a wearable fitness device that helps users perform bicep curls with

proper form while also keeping track of their number of repetitions. This device uses two 6-axis Inertial

Measurement Units (IMUs) to track the orientation of the user’s upper and lower arm in the form of roll,

pitch, and yaw. This data is processed by an ESP32 microcontroller as an input into form analysis that

provides the user feedback through both a buzzer and a web-based application. Through extensive

testing, the accuracy of the IMU sensors and real-time form analysis was verified. This project shows

potential to be able to extend to other dumbbell exercises as well due to the dynamic nature of the

sensor placement and form analysis. Users can significantly benefit by using this device at a home gym

by maintaining proper form without the assistance of extensive gym equipment.
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1. Introduction

1.1 Problem

Many gym goers struggle to maintain proper form during their workouts with dumbbells, which is why

they rely heavily on exercise machines. Maintaining proper form is important for two reasons. Bad form

can increase the risk of injuries, especially with heavier weight, and can reduce the efficiency of the

exercise, making it less effective at building muscle and strength [1]. Many people want to have some

sort of at-home gym so that they can work out in the comfort of their own home and maybe avoid

paying a gym membership fee, but they will miss out on all the equipment that a full gym has to offer. If

you are trying to construct an at-home gym, often all you will have, at least to start, is a set of dumbbells

and a bench. Hence, there should be a relatively cost-effective way to help people maintain proper form

even when they just use dumbbells so that they can get the maximum benefit from their exercise.

1.2 Solution

We designed a device that tracks the user’s arm to ensure that their form is correct. Our design uses two

6-axis (accelerometer and gyroscope) IMU (inertial measurement unit) sensors to calculate the

orientation of the user’s arm. There is a small sensor board located on the lower arm, and a larger main

board with another sensor and the main processor on the upper arm. This allows us to track the

orientation of each part of the arm and determine whether the movement is correct or not. We have

also developed an algorithm to detect the correct movement for an exercise, as determined by experts

in the field. At the moment, the only supported exercise is dumbbell curls, but more exercises could be

added in the future. When incorrect form is detected, the user is notified with a buzzer, and more

detailed information is provided through a web-based app. The app connects to the processor via

Bluetooth Low Energy, and allows the user to view their past set and see the number of reps and areas in

which incorrect form was detected.
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1.3 Visual Aid

Figure 1: Visual aid of device positioning

As seen in Figure 1, our device has sensors attached to the user’s arm in two locations: one on the back

of the tricep, and one on the bottom of the forearm. If worn correctly, the cable going from the tricep to

the forearm will go directly over the elbow. Each board is housed in a 3D printed enclosure so that it is

protected from damage and can more easily and comfortably be attached to the user’s arm. The board

on the back of the tricep has all the main circuitry and its enclosure houses the battery, so it is bigger and

heavier. Both enclosures can be attached to the user using elastic straps, and there is foam tape on the

back of the enclosures to help them stay in place.
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1.4 Block Diagram

Figure 2: Precision Dumbbell Assistant Block Diagram

As seen in Figure 2, our device has 5 subsystems: Sensing, Processing, Wireless Communication,

Feedback, and Power. The sensing subsystem is responsible for providing all the data necessary to

calculate the position of the user’s arm, namely acceleration and angular velocity data. This data is fed

into the processing subsystem, which is responsible for converting acceleration and angular velocity into

position and orientation. The processing subsystem is also responsible for calculating whether the

position and orientation of the sensors are within the acceptable bounds for the exercise. The wireless

communication subsystem is responsible for establishing and maintaining a wireless link between the

device and a computer that is used to send data to a web app. The feedback subsystem is responsible for

providing feedback to the user, both through a buzzer on the device and through the web app. Finally,

the power subsystem is responsible for providing the other subsystems with the correct voltage.

1.5 High Level Requirements

In order for our project to be considered successful, we had to meet three requirements. The first was

that the device needs to be accurate and consistent in motion and form analysis. Each sensor should be

able to correctly calculate its position and orientation relative to a starting point within a tolerance of

±5% of the true values. We were able to partially complete this requirement, as we were able to
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accurately calculate the orientation, but not position. The second requirement is that the device must be

able to give the user feedback quick enough and loud enough to diagnose incorrect form. The entire

system should read sensor data, analyze it, and provide feedback in no more than 50 ms, meaning that

feedback should be provided at a minimum of 20 Hz. We were able to meet this requirement, because

our code reads in and analyzes data at 100 Hz. The final requirement is that our device should not

restrict the movement of the user in any significant way. Its weight must be negligible (< 200g). All the

connections must be flexible enough and of appropriate length so that the device fits most arms without

getting in the way. We were also able to meet this requirement because the device weighs under the

threshold, and there is no noticeable resistance from the wire harness.
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2. Design

2.1 Power Subsystem

For the battery, we picked the Tiny Circuits ASR00012 [2]. This battery supplies 3.7V and is small enough

and light enough to meet our high level requirement of making the device comfortable to wear, while

also being readily available at an affordable price. It is also rechargeable, which is important for a device

that will be used regularly. The maximum discharge current is 1000mA and the minimum current needed

by the ESP32 (see section 2.2 Processing Subsystem) is 0.5A so it filled that requirement as well [3]. We

also needed to include the battery mating connector (JST SM02B-SRSSTB). We chose to use a LP2950CZ

voltage regulator that was available through the ECE Service Shop because it supplies 3.3V, the voltage

needed by all of our components, with an accuracy of ±1% which is well within our high level

requirement of ±5%. It also offers battery protection with thermal shutdown and short circuit protection

which protects the user from possible battery overheat without us having to add more battery

protection circuitry [4]. We chose a standard USB A connector (87583-2010RPLF) because it allowed us

to supply power and also use the USB programmer built into the ESP32. Our first iteration of the PCB had

the USB 5V routed into the main components instead of the voltage regulator, but once we learned that

USB provided 5V, we routed it into the regulator so that it could be dropped down to the correct 3.3V.

The up-to-date design can be found below in Figure 3.

Figure 3: Power Subsystem Schematic
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2.2 Processing Subsystem

We decided to use an ESP32-S3 as the microcontroller for this project because of its Bluetooth capability

and processing power, as well as the ability to easily get it from the ECE shop. When selecting a

microcontroller, we also had to make sure that it had the necessary SPI and PWM functionality [3]. The

subsystem contains just the microcontroller, so it is relatively simple from the hardware point of view, as

shown in the schematic, Figure 4. Almost all of the complexity is on the software side, because that is

where the data is processed and analyzed. This software runs in a loop after the sensor initialization

process has been completed, which will be discussed in the Sensing section. The main software loop

(shown in Figure 5 below) retrieves both accelerometer and gyroscope data, processes it into usable

orientation data, and then analyzes it using a form analysis algorithm we developed.

Figure 4: Processing Subsystem Schematic
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Figure 5: Processing Subsystem Software Flowchart

We had originally planned on processing the acceleration data into position data so that we would have

more than just orientation to base our form analysis on, but we realized that it would be impossible to

get any kind of good data. We learned that any sensor will have some inherent bias, so if we need to

integrate our measured data to get data that we can actually use, data from at least two different

sensors needs to be put through a filter to get an accurate value. This unfortunately ruled out position,

because we had no other way to track the position besides the accelerometer. In real-world applications,

the most common way to solve this problem is to supplement the acceleration data with GPS on large

scales, and some kind of optical sensor on small scales [5]. Fortunately, we could still get accurate

orientation data, because the IMU provides two ways to calculate the orientation: acceleration caused

by gravity and angular velocity. We can calculate the orientation of the sensor at rest using just the

accelerometer, because it measures the acceleration due to gravity. By putting different acceleration

vectors into the inverse tangent function, we can calculate each of the orientation angles. This does not

hold up when the sensor is in motion, however, because other acceleration forces could be acting on it.

For this reason, we also need to use the angular velocity data from the gyroscope. By multiplying the

most recent angular velocity by the time step (0.01 seconds), we can get the angular displacement of the

sensor, and then add it to the last calculated orientation. This value can be affected by bias because it is

being integrated, so in order to get an accurate value, we must use a filter of some kind. We chose to use

a complementary filter because it is relatively easy to implement and gives us the accuracy we need. It

takes 3% of the accelerometer orientation, and 97% of the gyroscope orientation, and adds them

together to form the new calculated orientation. A diagram of the filter can also be found as Figure 6

below. This gives us the long-term stability of the accelerometer calculation (it doesn’t drift), as well as

the short-term accuracy of the gyroscope (the calculation is not affected by external forces)[6].

The form analysis algorithm is also included in the processing subsystem, and is much more simple than

we originally thought it would be. Because we moved to a purely orientation based approach, all we

needed to do was check whether each sensor stayed within the bounds we defined, and otherwise,

notify the user. These bounds were determined experimentally, but with supervision and consultation

with online resources. For example, if the bicep sensor measured pitch is greater than 110 degrees, that

means that the user is likely leaning back, so that information is relayed to the Feedback subsystem and

on to the user. The form analysis algorithm also tracks reps based on whether the forearm sensor hits

certain pitch thresholds while all sensors stay in bounds.
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Figure 6: Orientation Complementary Filter Flowchart

2.3 Sensing Subsystem

The sensing subsystem is based around two LSM6DSM IMU sensors. These sensors were selected

because they provide both acceleration and angular velocity data, because we originally wanted to

calculate both the position and orientation of each sensor. Each sensor is connected to the ESP32 via SPI.

We had originally selected the ESP32-S3 because it has 4 SPI buses, which would let us interface with

each sensor concurrently. We found out two of the SPI buses are for internal use only, so we had to pivot

to a round-robin system, where each sensor is read from individually [3]. In our original design, before

our first PCB order, we had the CLK, MOSI, and MISO lines wired directly into each sensor, with only the

CS pin being different. We realized, however, that the sensors are in I2C mode when CS is high and SPI

mode when CS is low [7]. This meant that even if a sensor is not selected, it could possibly still send and

receive data, thinking that the messages coming in are in I2C format. For that reason, we decided to

isolate the SPI lines for each sensor using 4-bit muxes, meaning that if a sensor is not selected, all of its

SPI lines are electrically disconnected from the ESP32. An example of this mux can be seen as U11 in the

schematic, Figure 7 below. After our second PCB order, we realized that we had another problem with

the muxes. If a sensor was not selected, its CS line would be floating, which would cause undefined

behavior. To fix this, we added a 470Ω pull-up resistor to each CS line. This value was determined

experimentally by trying different resistances and choosing the one that had the quickest rise time while

also allowing the voltage to drop to zero when the sensor is selected. An example schematic can be seen

as Figure 8 below.
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Figure 7: Sensing Subsystem Schematic

Figure 8: CS Pull-Up Example Schematic

Figure 9: Sensing Subsystem Software Flowchart

The sensing subsystem also includes the software necessary to initialize and communicate with each

sensor. To do this, we used the driver distributed by ST, the sensor manufacturer [8]. The driver is

platform-independent, meaning that we only needed to define SPI read and SPI write functions, which

are then called by the driver functions. On startup, the ESP32 sends out an ID request, and if the sensor
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responds with the correct ID, we can assume that SPI communication is working. The ESP32 then sends

out a command to reset the sensor to its default configuration, and waits until the sensor responds with

confirmation that it has done so. Next, the microcontroller sends out messages to set the data output

rate to 104 Hz for both the accelerometer and gyroscope, and to set the accelerometer scale to 2g and

the gyroscope scale to 500 degrees per second. Finally, the ESP32 sends out a message to enable an

analog filter to smooth the data and a low pass filter to filter out noise on the accelerometer. After this

startup sequence, the code waits for 1 second for the sensor to warm up, and then starts reading and

processing data from it. A flowchart explaining the startup process can also be found above in Figure 9.

2.4 Feedback Subsystem

The feedback system is important for real-time interaction with the user. The processed ESP32 data is

sent to this subsystem through the wireless communication subsystem. The bicep curl form feedback

from the data is displayed in both an auditory and visual form. Based on the form analysis that is done

using various roll, pitch, and yaw thresholds on both the lower arm and upper arm orientation, incorrect

form is detected. Incorrect form triggers a buzzer using PWM signals. The buzzer is programmed to run

at a pitch of 200 Hz and at half the duty cycle, which means it will sound at half the maximum volume of

the buzzer. The web-based application will then display the number of repetitions of bicep curls, which is

normally tracked by making sure the user reaches a high and low pitch threshold value for the lower arm

orientation, and descriptive feedback that tells the user to prevent moving his elbow away from his body,

prevent bending his back, or prevent performing any other unadvised motion during the bicep curls. A

flowchart for the software part of the subsystem can be found as Figure 10 below.

To alert the user to look at the app feedback, we chose the Piezo buzzer due to its compact nature that

fit well with our PCB plan along with its energy efficiency. This buzzer had the ability to deliver a high

pitch sound in our target range of 200-600 Hz. In addition, we used HTML and CSS for formatting and

styling the web-based app respectively. Javascript was used for the processing of information and the

functionality of buttons on the app [9]. One button was created to let the user connect to a BLE device

directly from the app instead of using Bluetooth LE Explorer or any other medium. The app was run on

Google Chrome, which required a secure HTTP server due to Chrome’s security restrictions. A major

challenge was faced when trying to develop an Android-based application instead since Android Studio

did not let the BLE permission process through and the Android Emulator did not have the necessary

hardware to support Bluetooth functionality. These were the main reasons we decided to change the

design to include a web-based application.
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Figure 10: Feedback Subsystem Program on JavaScript Flowchart

2.5 Wireless Communication Subsystem

For the wireless subsystem, we chose to use Bluetooth Low Energy (BLE) instead of Bluetooth Serial due

to BLE’s power efficiency and ability to extend battery life. BLE allows for communication between the

ESP32 microcontroller and the user’s computer. After the ESP32 is powered on, BLE is initialized. Then,

we declared the ESP32 as a BLE device and set up a BLE server on it. This server hosts a service that has

characteristics that contain the data values for the roll, pitch, and yaw of both sensors, number of bicep

curl repetitions, and also descriptive feedback all in one string value that is deserialized in the web-based

application for display purposes. Advertising is also configured for the client, which is the computer, to

be able to discover the ESP32 as a BLE device nearby. The software flowchart is shown as Figure 11

below.

Through the entire interaction between the server and client, this subsystem utilizes the standard BLE

capabilities of the ESP32 microcontroller. BLE creates a successful connection between the server, which

is the ESP32, and the client, which is the user’s computer containing the web-based application [10].

After the connection is successful, the sensor data, number of repetitions, and bicep curl form feedback

is sent via BLE from the ESP32 to the computer for real-time display updates on the application. If the

BLE connection disappears, the application stops receiving real-time updates from the ESP32. Advertising

is reset to give the user a chance to attempt a BLE reconnection. Along with the challenges faced with

Android Studio, we were unable to add BLE functionality to the PCB design since there is an error in the

ESP32-S3 library for BLE functionality with Arduino IDE framework. Hence, BLE only works with the

breadboard prototype. Either using the old ESP32 version on the PCB design or programming the ESP32

using ESP-IDF would have most likely solved this problem.

Figure 11: Wireless Communication Subsystem Software Flowchart
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2.6 Physical Design

For the harness, we wanted to use connectors that were available in the ECE Service Shop. We initially

thought we needed to carry 7 signals between the bicep and forearm PCBs (3.3V, GND, Sensor Select,

CLK, MOSI, MISO, and Interrupt). We found that the interrupt signal was not needed. The connectors we

chose (65039030LF and 69167-107HLF) had 7 pins but in future designs we would want to choose a 6 pin

connector. Additionally, these connectors are vertical connectors but ideally we would have 90 degree

connectors in order to minimize the bend radius of the harness. For the length of the wires on the

harness, we used data from NC State University to find the length from the center of the bicep to the

center of the forearm of a 99th percentile man [11]. We found that this was 14.551 inches. We added 2

extra inches to account for the bend radius required due to the connectors being vertical for a total of

16.551 inches of wire. We wanted the wires to be long enough that even the tallest person could use

them without snapping a wire but not overly long which could cause the user to snag the wires on

obstacles. The other component of the physical design was the PCB/battery enclosures. We were

originally planning on just having a battery enclosure underneath the bicep PCB, but a student at our

design review recommended we add enclosures on top of the PCBs as well, so we did so. The enclosures

are 3D printed out of PLA, and are designed to snap together. Unfortunately, the printer we used was not

able to print the parts to a tight enough tolerance, so we ended up just taping the enclosure parts

together. The enclosures attach to the user’s arm with elastic bands that slide through slots in the

enclosures. This worked well enough, but other attachment options like Velcro might be easier to put on,

albeit a little bit heavier. The sensor board enclosure also has foam tape on the bottom to protect the

user from electrical components on the bottom of the PCB. CAD models of both enclosures can be seen

in Figure 12 below

Figure 12: Bicep PCB and Battery Enclosure (left) and Sensor PCB Enclosure (right)
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3. Verification

3.1 Power Subsystem

For the Power Subsystem, our requirement was for the voltage regulator to supply 3.3V± 5%. To test this,

we used a multimeter to probe the power output and ground pin of the voltage regulator with the

battery connected. We completed 10 trials to ensure consistent success. Refer to the Appendix A

(section A.1.1) to see the requirements and verification table (Table A.1) as well as the verification data

(Table A.2). The power subsystem passed all of the verification trials and therefore can be considered a

success.

3.2 Processing Subsystem

The Processing Subsystem has a total of four requirements. The first is that the microcontroller should be

able to calculate the position and orientation of each sensor with an accuracy of ±5% (Table A.3). This is

met because we are able to calculate orientation within these requirements (Table A.4). We tested this

by rotating the sensor along each axis (pitch, roll, and yaw), and measuring the results, which can be

found in Appendix A. The second requirement is that the position and orientation of each sensor should

be calculated and analyzed at at least 20 Hz (Table A.5). This requirement is partially met because we are

able to calculate orientation at 100 Hz, but not the position (Table A.6). This is measured by probing a

GPIO pin on the ESP32 that toggles every time a full set of data is analyzed, so the processing frequency

is two times the measured frequency. The results of this test can also be found in Appendix A. The third

requirement is that the calibration sequence must take less than 20 seconds and provide consistent

results (Figure A.7). This requirement is met because no calibration is needed due to the accelerometer

orientation calculation, which always has gravity as a reference (Table A.8). The device only has a startup

sequence of about 1.25 seconds, well below the 20 second threshold. Finally, SPI communication must

operate between each IMU sensor and the ESP32 microprocessor at a speed of at least 10 ± 1.0 MHz

(Table A.9). This requirement is met because we are able to probe the CLK pin on the ESP32 and check its

frequency, which is recorded in Appendix A (Table A.10).

3.3 Sensing Subsystem

The Sensing Subsystem has two requirements. The first requirement is that each IMU sensor should

provide acceleration and angular velocity with an accuracy of ±5% (Table A.11). This requirement is met

because the data received from the sensor is within the bounds, and is recorded in Appendix A (Table

A.12 & A.13). The second requirement is that each IMU sensor should provide data at a rate of at least

20 Hz for a total combined rate of 60 Hz (Table A.14). This requirement is met because although we only
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used two sensors, they are polled at 100 Hz each (Table A.15). This was tested with a GPIO pin in a very

similar fashion to the processing frequency requirement above.

3.4 Feedback Subsystem

For the feedback subsystem, our requirement was for the buzzer’s pitch to be between 200 and 600 Hz

for at least a 1 second duration (Table A.16). The buzzer’s pitch was specifically set to 200 Hz in the

ESP32 code and was set to run for half of the maximum duty cycle, which means we met the above

requirement (Table A.17 & A.18). The buzzer also needed to have a loudness value of at least 60 dB

(Table A.19), and this was measured at approximately 65 dB (Table A.20), which means we met this

requirement as well.

3.5 Wireless Communication Subsystem

For the wireless communication subsystem, we required that the BLE connection must work between

the ESP32 and the user’s device for at least 5 meters (Table A.21). We used the nRF Connect app, an

application created by Nordic Semiconductor that is commonly used to debug BLE connections, to make

sure that a smartphone can connect to the ESP32 at various distances up to 5 meters (Table A.22). This

test passed for every distance. In addition, we required that the BLE packet loss must be 20% or less

(Table A.23). We wrote a test case in the ESP32 code and displayed the results on the web-based

application. A message was sent over BLE at a fixed interval of 1 second each. The real time for each

message sent was tracked along with the message count. This test also passed since the message count

incremented each time the real time incremented, meaning that there was no packet loss since a

message was successfully being sent over BLE each second (Table A.24).

3.6 Physical Design

The physical design has two requirements. First, the bicep assembly (PCB, battery, and enclosure) must

weigh less than 100g (Table A.25). It weighs 84g (Table A.26), so the requirement is met. The forearm

assembly must also weigh less than 50g (Table A.27), and it does, at 24g (Table A.28).

14



4 Cost & Schedule

4.1 Cost Analysis

Tables 1 and 2 below show both parts and equipment costs for our project.

Table 1 Parts Costs

Description Qty Manufacturer Mfg Part # Value Source Unit Cost Total Cost

Microcontroller 1 HiLetgo
ESP-WRO
OM-32 N/A

ECE
Supply
Center $16.53 $16.53

Piezo Buzzer 1 Cylewet CYT1008 5V Amazon $0.59 $0.59

Voltage
Regulator 1

Texas
Instruments LP2950CZ 3.3V

ECE
Services
Shop $1.09 $1.09

Conn Header
SMD 1

JST Sales
America Inc

SM02B-SR
SS-TB N/A Digikey $0.51 $0.51

Lithium Ion
Battery Pack 1 TinyCircuits ASR00012 3.7V Mouser $8.52 $8.52

7 Pin
Connector
Cable 2 Amphenol FCI

65039030L
F N/A

Electronics
Service
Shop $0.92 $1.84

7 Pin
Connector
PCB 2 Amphenol FCI

69167-107
HLF N/A Mouser $1.44 $2.88

25 Feet 20
Gauge Wire 1

NTE Electronics
Inc

WHS20-02-
25 20 AWG

ECE
Supply
Center $9.20 $9.20

040 60/40
ROSIN
SOLDER 1 Kester

24-6040-00
39

N/A

ECE
Supply
Center $16.96 $16.96

1kg Spool PLA 1 AnyCubic N/A N/A Amazon $14.99 $14.99

6 Axis IMU 2
STMicroelectro
nics

LSM6DSM
TR N/A Mouser $4.17 $8.34

Resistor 1 Bourns
CR0805-J
W-471ELF 470Ω Mouser $0.10 $0.10

Resistor 1
Stackpole
Electronics Inc

RMCF0805
JG10K0 10kΩ

Electronics
Service
Shop $0.10 $0.10

Capacitor 4
Samsung
Electro-Mechani

CL21F104Z
AANNNC 0.1uF

Electronics
Service $0.10 $0.40
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cs Shop

Bicep PCB 1 JLC PCB N/A N/A JLC PCB $0.40 $0.40

Forearm PCB 1 JLC PCB N/A N/A JLC PCB $0.80 $0.80

Total Cost: $83.25

Table 2 Equipment Costs

Item Make Model Retail Cost Actual Cost

Soldering Iron Uline H-10799 $190 $0

Vise Unknown Unknown ~$20 $0

Oscilloscope Aigilent DSO7104B $24,081 $0

Scale Amazon Basics
Kitchen Scale with
LCD $12.59 $0

Measuring Tape Amazon Basics
Self-Locking Tape
Measure $7.97 $0

Mutlimeter Keysight 34461A $1,457 $0

3D Printer Prusa MK3 $899 $0

Computer PC Unknown ~$1,000 $0

Waveform
Generator Agilent 33500B Series $3,973 $0

Total Cost: $30,621 $0

Assuming that the average hourly rate for an electrical/computer engineer is $50/hr, and that we each

worked on the project for 85 hours, we can use the following equation for total labor costs:

$50 ⨯ 85 hours ⨯ 2.5 overhead ⨯ 3 people = $31875

Adding the parts, equipment, and labor costs together, we can calculate the total cost as:

$83.25 + $0 + $31875 = $31958.25

This cost is incredibly labor heavy, but if our project were to be produced on a larger scale the costs

would be much more proportional.
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4.2 Schedule

The schedule we followed can be found in Table 3 below.

Table 3 Schedule

Week Task Person

2/25 - 3/2 Started ordering parts for prototyping Everyone

Finished PCB schematic and started layout Ellie

Ordered sensor eval kit Cole

Researched BLE and get successful communication between dev
board and computer

Ronit

3/3 - 3/9 Finished layout and ordered PCBs Ellie

Established SPI communication between eval kit sensor and dev
board

Cole

Got successful communication between dev board and computer Ronit

3/10 - 3/16 Spring Break Everyone

3/17 - 3/23 Start weighing components to ensure that they meet the weight
limit, tested standalone components like buzzer

Ellie

Tested sensor accuracy Cole

Worked on BLE communication between ESP32 and smartphone Ronit

3/24 - 3/30 Assembled PCB v1 Ellie

Started work on position and orientation calculations, pivoted to
just orientation

Cole

Start developing app UI with dummy data, work out bugs with
BLE

Ronit

3/31 - 4/6 Second PCB revision Ellie

Worked on complementary filter Cole

Pivoted to web based app Ronit

4/7 - 4/13 Assembled second PCB Ellie
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Tuned complementary filter, started on form analysis Cole

Worked on web app with dummy data Ronit

4/14 - 4/20 Continued PCB assembly and debugging Ellie

Brought together sensor and bluetooth code, continued working
on form analysis

Cole and
Ronit

4/21 - 4/27 Demo, fix final bugs Everyone

4/28 - 5/1 Presentation and Final Paper Everyone
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5 Ethics & Safety

5.1 Ethical & Safety Issues

Accuracy of Form: The most important ethical issue is obviously the accuracy of form enforced by our

device as it could lead to injuries if inaccurate. To ensure this, we used data from a certified online

training source that we have referenced below. The IEEE and ACM code of ethics mention to prioritize

user safety and having a risk of injury goes directly against the code [12] [13].

Privacy of Data: The privacy of data is also a cause of ethical concern as many people who workout are

sensitive about information in their fitness diaries and quality of form in exercises. We needed to ensure

safe storage of our data. The IEEE and ACM code of ethics clearly state to prioritize privacy and

confidentiality of user data [12] [13].

Wearable Device: We also had to make sure that the device is wearable for the safety of the user. The

wires and elastic straps can’t be too tight and should not prevent the user from moving their body parts

naturally. When designing the enclosure we had to make sure that it was safe and comfortable for the

user to wear.

Safe Materials: Lastly, the materials that we used had to be considered safe to contact human skin. Since

voltage travels through the materials used for the connections, they can’t get overheated to the extent

that it causes skin irritation.

Battery Safety: Lastly, the 3.7V batteries must not get overheated since they are present in an enclosure

that is in very close contact with the user’s skin. Overheating could also damage other electronic

components in the design.
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6 Conclusion

To conclude, we will discuss both our accomplishments over the course of the semester as well as areas

where our project came a little bit short. We learned a great deal over the course of the semester, and

we are confident that with more work our device will be able to even more accurately analyze bicep curl

form, as well as analyze other dumbbell exercises.

Our precision bicep assistant is able to accurately and consistently offer form analysis to the wearer. We

are able to accurately determine the orientation of the sensors on the bicep and the forearm and use

that data to detect the position of the user’s arm and decide if they are using proper form that is both

safe and maximizes their muscle growth. The buzzer is able to sound when the user is in an unsafe or

non-optimal position at a volume that the user can easily hear, allowing them to quickly adjust their

movement. The device is small enough that it does not adversely affect the user’s form and the wire

harness is able to accommodate the entire range of motion of the exercise. We have a working web app

that gives users feedback about their form and counts the number of correct repetitions they perform.

However, there is some room for improvement. Future steps for this project would include updating the

PCB with the correct footprint for the new buzzer, adding the 470Ω pull-up resistor to the analog switch,

removing the redundant analog switch and connector, and shrinking the size of the board to make it

even more comfortable for the user. We could also improve the harness by using 90 degree connectors

as opposed to vertical connectors which would minimize the bend radius of the wires. We could also

utilize connectors with screws or other attachment pieces in order to more securely hold the harness in

place. Ideally, we would also replace the ESP32 with a model that is Bluetooth Low Energy compatible

and can interface with the feedback app. We have also considered using a louder buzzer to make the

feedback easier to hear in a loud gym environment. This technology also has a lot of potential to scale to

other dumbbell or non-dumbbell exercises. For many exercises, it would be sufficient to simply add a

new form analysis algorithm to track the new exercise. For other exercises, we would possibly need to

add more sensors to more parts of the body by repeating our success with the forearm sensor board.
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Appendix A (Requirements and Verification Tables)

A.1 Power Subsystem

Table A.1: R&V for Power Subsystem

Requirement

The voltage regulator must regulate the voltage to 3.3 V ± 5% in order to ensure that there is enough

power supply to ESP32 and sensors but not enough power to damage electronic components. The

LP2950CZ has internal protection circuitry including short circuit protection and thermal protection

that will protect against many accidental issues.

Verification

Equipment

Digital multimeter, 3.7 V lithium batteries, voltage regulator prototype

Test Procedure

1. Connect the 3.7 V lithium batteries to the voltage regulator prototype using the corresponding

terminals.

2. Make sure the batteries are on and supplying voltage.

3. Record the final voltage after the regulator using a digital multimeter.

4. Vary the resistance in the voltage regulator.

5. Repeat steps 3 and 4 10 times and record the results.

6. If each recorded voltage value is in range 3.3 V ± 5%, this test is successful.

Presentation of Results

Include a data table recording the voltages from all 10 trials in the notebook and final report. Also, plot

a line graph with input resistance on x axis and output voltage on y axis.

Table A.2: Verification Data for Power Subsystem

Trial # Measured Voltage (V) % Error Pass/Fail

1 3.298 0.06% Pass

2 3.207 2.81% Pass

3 3.288 0.36% Pass
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4 3.294 0.18% Pass

5 3.255 1.36% Pass

6 3.283 0.52% Pass

7 3.301 0.03% Pass

8 3.296 0.12% Pass

9 3.267 1% Pass

10 3.277 0.7% Pass

A.2 Processing Subsystem

Table A.3: R&V for ESP32 Orientation Data

Requirement

The microcontroller should be able to calculate the position and orientation of each sensor with an

accuracy of ±5%

Verification

Equipment

LSM6DSMTR IMU sensor, ESP32 development board, Yardstick, Protractor

Test Procedure

Position:

1. Connect IMU sensor to ESP32 development board using manual.

2. Place the IMU sensor on a hard flat surface with the chip facing up, and a yardstick next to it.

3. Move the sensor along the yardstick 50cm.

4. Check to see if the calculated position has changed in the correct direction 50cm ±5%.

5. Repeat steps 3-4 5 times, and record the results

6. Repeat steps 2-5 for the Y and Z directions (stand the yardstick up for Z)

7. If all values are within the ±5% tolerance, the test passes.

Orientation:

1. Connect IMU sensor to ESP32 development board using manual.

2. Place the IMU sensor on a hard flat surface with the chip facing up, and a protractor next to it.

3. Using the protractor, move the sensor until it is 45 degrees from flat.
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4. Check to see if the calculated orientation has changed in the correct direction 45° ±5%.

5. Repeat steps 3-4 5 times, and record the results

6. Repeat steps 2-5 for the other two axes (lay the protractor down for yaw)

7. If all values are within the ±5% tolerance, the test passes.

Presentation of Results

Record all readings in separate data tables in the notebook for the position and orientation, and take

note whether each test passes or not.

Table A.4: Data for ESP32 Orientation

Trial # Measured Angle (°) % Error Pass/Fail

1 (Pitch) 43.48 3.50% Pass

2 (Pitch) 43.29 3.95% Pass

3 (Pitch) 43.83 2.67% Pass

4 (Pitch) 43.97 2.34% Pass

5 (Pitch) 42.95 4.77% Pass

6 (Roll) 43.69 2.99% Pass

7 (Roll) 43.50 3.45% Pass

8 (Roll) 43.47 3.52% Pass

9 (Roll) 43.68 3.02% Pass

10 (Roll) 42.88 4.94% Pass

11 (Yaw) 43.65 3.09% Pass

12 (Yaw) 42.95 4.77% Pass

13 (Yaw) 43.38 3.73% Pass

14 (Yaw) 43.78 2.79% Pass

15 (Yaw) 43.55 3.33% Pass

Table A.5: R&V for Sensor Data Frequency
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Requirement

The orientation and position of each sensor should be calculated and analyzed at at least 20 Hz

Verification

Equipment

Precision Dumbbell Assistant, Oscilloscope

Test Procedure

1. Connect two sensor boards to the main board as shown in the visual aid

2. Connect the oscilloscope to a GPIO pin on the ESP32

3. Write a test program that toggles the value of the GPIO pin after every processing cycle

(position and orientation update / analysis)

4. Check the frequency of the GPIO pin. If it is higher than 10 Hz, then the test is successful. 10

Hz is the target value because the pin is toggled on every cycle, so there will be two cycles for

every period of the GPIO signal.

5. Run the test 5 times, and ensure that it meets the 20 Hz benchmark for every test.

Presentation of Results

Record the results of each test in the notebook and mark whether the test passed or not.

Table A.6: Data for Sensor Data Frequency

Trial # Measured Frequency (Hz) Actual Frequency (Hz) Pass/Fail

1 49.00 98.00 Pass

2 49.30 98.60 Pass

3 48.57 97.14 Pass

4 49.41 98.82 Pass

5 48.62 97.24 Pass

Table A.7: R&V for Sensor Calibration

Requirement
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The calibration sequence must take less than 20 seconds and provide consistent results.

Verification

Equipment

Precision Dumbbell Assistant, Stopwatch

Test Procedure

Original Procedure:

1. Put on the device, start the calibration sequence, and start the stopwatch

2. If the user is able to complete the calibration in 20 seconds or less, this part of the test passes

3. The user should perform 10 of the same correct movements to the best of their ability, and if

they receive positive feedback on 9/10, the second test passes

4. Repeat steps 2-3 5 times, and if all 10 tests pass, the calibration sequence is verified.

New Procedure:

1. No calibration is needed because the accelerometer calculates orientation from gravity

2. The startup sequence takes 1.25 seconds in code, well below the threshold, so this does not

have to be rigorously tested

Presentation of Results

Record the calibration time and number of correct movements for each trial in the notebook, and

mark whether each test passed or not.

Table A.8: Data for Sensor Calibration

Trial # Startup Time (sec) Pass/Fail

1 1.25 Pass

Table A.9: R&V for SPI Communication

Requirement

SPI communication must operate between each IMU sensor and the ESP32 microprocessor at a speed

of at least 10 ± 1.0 MHz.

Verification

Equipment

Oscilloscope, frequency counter, LSM6DSMTR IMU sensor, ESP32 development board

26



Test Procedure

1. Connect the oscilloscope to the SPI clock pin of both the IMU sensor and ESP32.

2. Initialize IMU sensor to transmit data to ESP32.

3. Use the frequency counter to measure the frequency of the SPI clock pin.

4. If the frequency value is between 9 and 11 MHz, this test is successful.

5. Repeat steps 2-4 10 times to generate enough data.

Presentation of Results

Include a data table for the frequency readings in the notebook and final report that includes all 10

trials.

Table A.10: Data for SPI Communication

Trial # Measured Frequency (MHz) Pass/Fail

1 10.00 Pass

2 10.02 Pass

3 10.01 Pass

4 10.03 Pass

5 9.98 Pass

6 10.02 Pass

7 9.97 Pass

8 9.98 Pass

9 10.01 Pass

10 10.03 Pass

A.3 Sensing Subsystem

Table A.11: R&V for Sensor Accuracy

Requirement
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Each IMU sensor should provide acceleration and angular velocity with an accuracy of ±5%

Verification

Equipment

LSM6DSMTR IMU sensor, ESP32 development board, flat surface

Test Procedure

Accelerometer:

1. Connect IMU sensor to ESP32 development board using manual.

2. Place the IMU sensor on a hard flat surface with the chip facing up.

3. Request accelerometer readings using the ESP32 microcontroller.

4. Record the provided accelerometer data.

5. Repeat steps 3 and 4 5 times to gather enough data.

6. Repeat steps 2 through 5 for each of the 2 remaining axes (see datasheet pg. 20 for

acceleration axes relative to package)

7. Each value should be within ±5% of the desired value. The desired value should be 1.0 with

the sign of the axis pointing straight down. For example, the correct value for testing in the +Z

direction (chip facing up) is X = 0.0g, Y = 0.0g, Z = -1.0g.

8. If all readings are within ±5% of the desired value, the test is successful.

Gyroscope:

1. Connect IMU sensor to ESP32 development board using manual.

2. Place the IMU sensor on the surface with the chip facing up.

3. Request gyroscope readings using the ESP32 microcontroller.

4. Record the provided gyroscope data.

5. Repeat steps 3 and 4 5 times to gather enough data.

6. Repeat steps 2 through 5 for each of the 2 remaining axes (see datasheet pg. 20 for gyroscope

axes relative to package)

9. Each value should be within ±5% of the desired value, which should be 0 for all tests

10. If all readings are within ±5% of the desired value, the test is successful.

Presentation of Results

Record all readings in separate data tables in the notebook for the accelerometer and gyroscope, and

take note whether each test passes or not.

Table A.12: Data for Sensor Acceleration Accuracy

Trial # Measured Acceleration (Gs) % Error Pass/Fail

28



1 (X) 1.00 0% Pass

2 (X) 0.99 1% Pass

3 (X) 0.98 2% Pass

4 (X) 1.00 0% Pass

5 (X) 1.02 2% Pass

6 (Y) 1.02 2% Pass

7 (Y) 1.01 1% Pass

8 (Y) 1.02 2% Pass

9 (Y) 0.99 1% Pass

10 (Y) 1.02 2% Pass

11 (Z) 0.98 2% Pass

12 (Z) 1.01 1% Pass

13 (Z) 1.02 2% Pass

14 (Z) 0.98 2% Pass

15 (Z) 1.01 1% Pass

Table A.13: Data for Sensor Angular Velocity Accuracy

Trial # Measured Angular Velocity (dps) % Error Pass/Fail

1 (Pitch) 0.00 0% Pass

2 (Pitch) 0.00 0% Pass

3 (Pitch) -0.02 0% Pass

4 (Pitch) 0.00 0% Pass

5 (Roll) 0.02 0% Pass

6 (Roll) -0.02 0% Pass

7 (Roll) 0.02 0% Pass
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8 (Roll) 0.00 0% Pass

9 (Roll) 0.00 0% Pass

10 (Roll) 0.02 0% Pass

11 (Yaw) 0.00 0% Pass

12 (Yaw) 0.00 0% Pass

13 (Yaw) 0.02 0% Pass

14 (Yaw) -0.02 0% Pass

15 (Yaw) 0.00 0% Pass

Table A.14: R&V for Sensor Frequency

Requirement

Each IMU sensor should provide data at a rate of at least 20 Hz for a total combined rate of 60 Hz

Verification

Equipment

Precision Dumbbell Assistant, Oscilloscope

Test Procedure

1. Connect two sensor boards to the main board as shown in the visual aid

2. Connect the oscilloscope to a GPIO pin on the ESP32

3. Write a test program that toggles the value of the GPIO pin after receiving data from each of

the three sensors.

4. Check the frequency of the GPIO pin. If it is higher than 10 Hz, then the test is successful. 10

Hz is the target value because the pin is toggled on every read, so there will be two reads for

every period of the GPIO signal.

Presentation of Results

Record the results of the test as a single value in the notebook and mark whether the test passed or

not.

Table A.15: Data for Sensor Frequency
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Trial # Measured Frequency (Hz) Actual Frequency (Hz) Pass/Fail

1 49.00 98.00 Pass

2 49.30 98.60 Pass

3 48.57 97.14 Pass

4 49.41 98.82 Pass

5 48.62 97.24 Pass

A.4 Feedback Subsystem

Table A.16: R&V for Buzzer Pitch

Requirement

The buzzer must have a pitch between 200 Hz and 600 Hz with a tolerance of ± 10% and the sound

must last at least 1 second.

Verification

Equipment

Buzzer, oscilloscope, function generator

Test Procedure

1. Connect the buzzer to the function generator using corresponding terminals.

2. Use the function generator to generate a square function with a frequency of 200 Hz.

3. Use the oscilloscope to record the frequency of the resulting sound.

4. Increase the frequency of the function by 100 Hz.

5. Repeat steps 3 and 4 until you reach 600 Hz.

6. If each recorded frequency is in the range of the input frequency ± 10%, this test is successful.

Presentation of Results

Include a data table recording the input and output frequencies in the notebook and final report. Also,

plot a line graph with input frequencies on x axis and output frequencies on y axis.
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Table A.17: Data for Buzzer Pitch

Input Frequency (Hz) Output Frequency
(Hz)

Error (%) Pass/Fail

200 186 7.00 Pass

300 278 7.33 Pass

400 410 2.50 Pass

500 476 6.00 Pass

600 635 5.83 Pass

Table A.18: Line Graph for Buzzer Pitch

Table A.19: R&V for Buzzer Loudness

Requirement

The buzzer must have a loudness of at least 60 dB

Verification
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Equipment

Buzzer, function generator, smartphone

Test Procedure

1. Connect the buzzer to the function generator using corresponding terminals.

2. Use the function generator to generate a square function with a frequency of 200 Hz.

3. Use a smartphone decibel measurement app to measure the loudness of the buzzer.

4. Increase the frequency of the function by 100 Hz.

5. Repeat steps 3 and 4 until you reach 600 Hz.

6. If each recorded frequency has a loudness above 60 dB, the test passes.

Presentation of Results

Include a data table recording the loudness for each frequency, and note whether the test passes for

each in the notebook and final report.

Table A.20: Data for Buzzer Loudness

Frequency (Hz) Loudness (dB) Pass/Fail

200 64 Pass

300 62 Pass

400 68 Pass

500 65 Pass

600 67 Pass

A.5 Wireless Communication Subsystem

Table A.21: R&V for BLE Distance

Requirement

There must be a Bluetooth Low Energy connection between the ESP32 microcontroller and the user’s

device at a distance of at least 5 meters.

Verification
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Equipment

ESP32 microcontroller, laptop, measuring tape

Test Procedure

1. Place the ESP32 microcontroller at a fixed location.

2. Initialize ESP32 with a program that sets up BLE..

3. Use measuring tape to measure 1 meter distance from ESP32.

4. Use a laptop to connect to the ESP32 microcontroller through bluetooth.

5. Record if connection is successful.

6. Use measuring tape to move back 1 meter further.

7. Repeat steps 4-6 until connection is unsuccessful.

8. If the final distance is at least 5 meters, this test is successful.

Presentation of Results

Include a data table recording the distances and connection success or failure in the notebook and

final report.

Table A.22: Data for BLE Distance

Trial # Distance (m) Pass/Fail

1 0.5 Pass

2 1.0 Pass

3 1.5 Pass

4 2.0 Pass

5 2.5 Pass

6 3.0 Pass

7 3.5 Pass

8 4.0 Pass

9 4.5 Pass

10 5.0 Pass
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Table A.23: R&V for BLE Packet Loss

Requirement

The BLE connection must have packet loss of 20% or less at 5m.

Verification

Equipment

ESP32 microcontroller, smartphone, measuring tape

Test Procedure

1. Place the ESP32 microcontroller at a fixed location.

2. Initialize ESP32 with a program that sends BLE notifications to a smartphone located 5m away

at a set interval for 5 minutes

3. Measure how many messages are received on the smartphone out of how many are sent, and

calculate the percentage of messages that were received.

4. Repeat this test 4 times in varying conditions (inside, outside, out of sight)

Presentation of Results

Record the results of the test in a table and label which results go with which condition and mark

whether the test passed or not. This table should be in both the notebook and final report

Table A.24: Data for BLE Packet Loss

Trial # Sent Received Percent Condition Pass/Fail

1 300 300 100% Inside Pass

2 300 300 100% Outside Pass

3 300 300 100% Out of Sight Pass

A.6 Physical Design
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Table A.25: R&V for Device Weight

Requirement

Each main board, battery, and enclosure should weigh less than 100g

Verification

Equipment

Main Board, Battery, Enclosure, Scale

Test Procedure

1. Place the assembled main board, battery and enclosure on the scale and record the value.

2. If the assembly weighs less than 100g, the test is successful.

Presentation of Results

Record the results of the test as a single value in the notebook and mark whether the test passed or

not.

Table A.26: Data for Device Weight

Weight(g)

84

Table A.27: R&V for Sensor Board Weight

Requirement

Each sensor board and accompanying wire harness should weigh less than 50g

Verification

Equipment

Sensor Board and Wire Harness, Scale

Test Procedure

1. Place the sensor board and wire harness on the scale, and record the value.

2. If the board and harness weigh less than 50g, the test is successful.
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Requirement

Each sensor board and accompanying wire harness should weigh less than 50g

Verification

Equipment

Presentation of Results

Record the results of the test as a single value in the notebook and mark whether the test passed or

not.

Table A.28: Data for Sensor Board Weight

Weight(g)

24
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