

Abstract

This project proposes a gesture-controlled audio effects processor to address accessibility and practicality
concerns in audio production and live music settings. By leveraging camera-based gesture detection, users
can manipulate audio effects in real-time without the need for traditional physical interfaces like buttons
or knobs. This innovative approach offers a dynamic and expressive means of controlling audio effects,
particularly beneficial for individuals with disabilities or those navigating complex production
environments. With the ability to adjust various effect parameters through intuitive hand gestures, the
device provides a streamlined alternative to conventional DJ controllers or hardware processors,
enhancing both accessibility and versatility in audio manipulation.

2

Contents
1. Introduction...4

1.1 Purpose.. 4
1.2 Functionality..4
1.3 Subsystem Overview... 4

1.3.1 Power Subsystem... 4
1.3.2 Gesture Control Subsystem..4
1.3.3 Audio Subsystem... 5
1.3.4 User Interface (UI) Subsystem...5
1.3.5 Top-Level Diagram.. 5

2. Design.. 6
2.1 Power Subsystem Design.. 6
2.2 Gesture Control Subsystem Design...9
2.3 Audio Subsystem Design...9
2.4 User Interface Subsystem Design..11

3. Design Verification...13
3.1 Power Subsystem Verification Results.. 13
3.2 Gesture Subsystem Verification Results..14
3.3 Audio Subsystem Verification Results.. 16
3.4 UI Subsystem Verification Results.. 17
3.5 High Level Requirement Verification Results...18

4. Costs...18
5. Schedule……………………………………………………………………………………………… 19
6. Conclusion..20

6.1 Accomplishments.. 20
6.2 Uncertainties..21
6.3 Ethical considerations..21
6.4 Future work..21

6.4.1 Custom Neural Net...21
6.4.2 Bluetooth Audio...21
6.4.3 Custom Gesture Mapping.. 22

Appendix ... 22
References…………………………………………………………………………………………………35

3

1. Introduction

1.1 Purpose
Both in video production and live music, individuals often want the ability to apply effect to audio in real
time. There are solutions for this such as DJ controllers or hardware effects processors. For all of these
systems, you usually need to click buttons, turn knobs, etc. Unfortunately, not all people have the ability
to perform these functions due to disabilities. Furthermore, those within live settings, operating physical
equipment may be challenging to manage with all the other aspects of production.

This project aims to develop a gesture-controlled audio effects processor. This device will allow users to
manipulate audio effects through hand gestures, providing a more dynamic and expressive means of audio
control. The device will use a camera to detect gestures, which will then adjust various audio effect
parameters in real-time. This will allow for the same features of something like a DJ mixer with less
equipment & the ability to with your hands free.

1.2 Functionality
Our first high-level requirement was that the gesture-controlled audio effects processor is able to detect
hand gestures using a camera with 95% accuracy +-5% within 5 seconds of making the gesture. This
high-level requirement is necessary so that the user is not deterred by a slow detection system. In addition,
it is much more feasible to achieve based on the hardware being used to drive the subsystem pertaining to
detecting hand gestures.

Our second high-level requirement was that the gesture-controlled audio effects processor is able to apply
five audio effects to an input audio signal and send the new audio signal to the external speaker within a
second of receiving a control signal from the gesture detection subsystem with a tolerance of +-½ of a
second. The purpose of the timing constraint is to make sure that the user does not notice a delay between
a hand gesture detection and the duration needed to execute an audio effect on the input audio signal.

Our last high-level requirement was that the external display should accurately show the current playing
sound effect with 99% accuracy with a tolerance of +-1%. This requirement is integral to make sure that
the user gets accurate feedback on what audio effect is being applied onto the input audio signal based on
a message shown by the external display.

1.3 Subsystem Overview

1.3.1 Power Subsystem
This subsystem provides essential power distribution to all components within the three other subsystems.
Specifically, it gives 5 V to the Raspberry Pi and Amplifier. Also, it supplies 3.3 V (generated by a linear
regulator) to the rest of the components such as the external display and microcontroller.

1.3.2 Gesture Control Subsystem
This subsystem consists of a Raspberry Pi that communicates with an imaging sensor (camera) with the
use of a camera serial interface (Csi) communication to receive captured frames. These frames are

4

analyzed by software to detect hand gestures, and control signals with respect to a type of hand gesture
are sent to the GPIO pins of the microcontroller. The programmed microcontroller will execute the
software pertaining to the Audio Subsystem and User Interface Subsystem.

1.3.3 Audio Subsystem
This subsystem contains a microSD, amplifier, and speaker. The microSD contains the input audio signal
(.wav file) and sends its data to the microcontroller using serial peripheral interface (SPI) communication
[17]. After the microcontroller receives control signals coming from the Gesture Control Subsystem, an
algorithm is performed to apply one of five audio effects (reverb, distortion, gain up, gain down, or
low-pass filter) to the input audio signal. The modified audio signal gets converted from digital to analog
within the microcontroller, and the analog audio signal goes through an amplifier that boosts it to a
speaker.

1.3.4 User Interface (UI) Subsystem
This subsystem is comprised of a liquid crystal display (LCD) which communicates with the
microcontroller through inter-integrated circuit (I2C) communication [12]. The control signals being sent
from the Gesture Control Subsystem determines what seven characters will be displayed to the LCD. The
seven character message will represent either an audio effect applied to the input audio signal or no hand
gesture detection.. This subsystem is essential for the user to know which audio effect is currently being
applied to the input audio signal based on a hand gesture. Moreover, this project does not assume that the
user can distinguish between audio effects through sound alone since they may not have prior exposure to
the different audio effects.

1.3.5 Top-Level Diagram
The following top-level diagram (Figure 1) shows how the subsystems interconnect with each other.

Figure 1. Top-Level Diagram of the Hands Gesture Audio Effects System

5

2. Design

2.1 Power Subsystem Design
The power subsystem used a DC barrel jack (PJ-102AH) to connect to a 5V 4.0 A wall power adapter
which is the primary source for the entire project. In one path, power is going straight into the USB-A
connector (87583-3010RPALF). Furthermore, a micro USB B to USB-A cable is used to connect the
Raspberry Pi to the power source. In the other path, power is going into the linear regulator
(LM1085ISX-3.3/NOPB) which steps down the input 5 V to 3.3 V. This lower voltage is used to power
most of the components on the board with the exception of the amplifier. The amplifier is connected to the
5 V line since that is the minimal voltage to power it based on its datasheet. This original design is shown
in Figure 2.

Figure 2. Original Power Supply Design

For the linear regulator, this part was chosen based on its thermal dissipation rating. Moreover, the worst
case current drawn (754 mA) at the linear regulator output was found based on datasheets for the
components listed in Table 1.

Table 1. Worst-Case Scenario Current Drawn

Component Current drawn (worst case) @ 3.3 V

STM32H743VIT6 700 mA

LCD 1.5 mA

microSD connector 50 mA

Amplifier < 2.5 mA

Next, the thermal power dissipation equation (Equation 1.1) given by the ECE-445 website was utilized
such that it has an assumption that the input current to the linear regulator is the same as the output
current.

6

The thermal power dissipation for the linear regulator based on the worst-case drawn current is calculated
below as roughly 1.28 W.

Hence, the linear regulator was chosen to have a power dissipation rating much higher than 1.28 W. On
DigiKey, a relatively cheap linear regulator (LM1085ISX-3.3/NOPB) that met that requirement was rated
for 3.0 A at 1.5 V [13]. Using Equation 1.1, the power rating for that linear regulator is calculated to be
4.50 W.

Finally, the junction temperature for this linear regulator was observed to see if it can handle hot ambient
temperature. The thermal junction temperature equation (Equation 1.4) is given by the ECE-445 website.
Note that RθJA is the junction-to-ambient thermal resistance given by the linear regulator’s datasheet as
22.8 degree Celsius per Watt [13].

Assuming that there is an ambient temperature outside of the product at roughly 38 degree Celsius, then
the junction temperature is calculated to be around 67.184 degree Celsius.

This temperature is much smaller than the recommended temperature (125 degree Celsius) stated by the
linear regulator’s datasheet [13]. Hence, a heat sink will not be required for the linear regulator. As a final
note, the linear regulator has a capacitor at its input and output in order to stabilize the voltages. The
capacitor values were given by the linear regulator datasheet.

A design alternative made (after the Design Review) for the Power Subsystem was the addition of an
eFuse (TPS259814ARPWR) to protect the main printed circuit board components from incorrect voltages
being connected to the DC barrel jack or any shorts that have been formed due to poor soldering.

The voltage lockout circuit design for the eFuse was given by its datasheet as illustrated in Figure 3 [14].
Moreover, the eFuse required resistors to set up its undervoltage lockout (UVLO) and overvoltage lockout
(OVLO) [14]. The respective node voltage gets compared with a threshold [14]. If the UVLO voltage pin
or OVLO voltage pin is above or below the threshold, power will be shut off to the entire board [14]. The
Raspberry Pi has an exception since its needed track width for worst-case drawn current is too large to
connect to the eFuse output pin.

7

Figure 3. Voltage Divider Circuit for eFuse Voltage Lockout

Based on the circuit shown in Figure 3, I obtained Equation 2.1 and Equation 2.2.

After using maximum and minimum voltage thresholds for the lockout pins from the eFuse datasheet, the
resistances were calculated to be R1 = 7.5 kΩ, R2 = 510 Ω, and R3 = 2 kΩ. These resistances only allow an
input voltage range of 4.8 V to 5.4 V to be used as a source from the wall power adapter. Otherwise, the
power will shut off at the eFuse output when input voltage is outside of that range.

Aside from undervoltage and overvoltage protection, the eFuse has a current limiter in case of a short
occuring somehow on the custom PCB side [14]. Using Equation 3.1 given by the eFuse’s datasheet, the
required resistor to connect to its current limiter pin was calculated to be 5.6 kΩ [14]. The current limiter
being set to 1.176 A is more than enough since the worst case current drawn at the eFuse output is smaller
than that value. Any current above the current limiter will trigger the eFuse to turn off power at its output
since a short circuit has occurred somewhere in the PCB.

As for the final schematic design of this power subsystem, all the component connections are shown
below in Figure 4.

8

Figure 4. Final Power Supply Circuit Schematic

2.2 Gesture Control Subsystem Design
For the design of the Gesture Control Subsystem, a camera module (made by Raspberry Pi company) was
used to send captured frames via Csi to the Raspberry Pi Model 3b. A single captured frame gets analyzed
by software to detect a hand gesture which is translated into a three-bit control signal passed to the global
parameter input (GPI) pins of the microcontroller (STM32H7VIT6) that is a part of the main printed
circuit board (PCB). In short, three global parameter output (GPO) pins will be utilized from the
Raspberry Pi to form a total of eight unique signals that this subsystem can send to the microcontroller.
The layout of the Raspberry Pi 3b layout pins are shown in Figure 5, and the pins to be used will be GPIO
17, 22, and 27.

Figure 5. GPIO layout of Raspberry Pi 3B

As a final note, a Raspberry Pi was chosen to handle the image processing aspect of the design since it
requires a more complex algorithm that needs a lot of memory for the libraries associated with the
software. According to its datasheet, it has about 1 Gb of memory which should be plenty for the Gesture
Control Subsystem [18].

2.3 Audio Subsystem Design
The design of the Audio Subsystem revolved around applying one of the five audio effects shown below
using software:

9

Reverb: Simulates the echo and ambiance of a physical space, adding depth to the audio. To implement,
we will use the Schroeder Reverb Algorithm, which uses multiple feedback delay lines and all-pass filters
to simulate room ambiance.

Distortion: Clips and modifies the audio waveform, adding complexity and texture by boosting
aggressive tones

Gain Adjustment (Up and Down): Varies the amplitude of the audio signal, controlling volume.
Multiply each incoming audio sample by a gain factor. A gain factor greater than 1 increases volume,
while a gain factor less than 1 decreases it.

Low-pass Filter: Attenuates frequencies above a cutoff, reducing high-frequency noise or brightness.
Implement the filter using a simple discrete time equation: y[n] = α * x[n] + (1 - α) * y[n-1], where x[n] is
the input signal, y[n] is the output signal, n is the sample index, and α (alpha) is the filter coefficient
related to the cutoff frequency.

Note: The CMSIS-DSP library is used in software for optimized DSP functions. The software
implementation for audio is shown in the Appendix C section.

In terms of hardware design, the microSD connector required a 3.3 V power supply coming from the
Power Subsystem [15]. Also, the data lines for the connector were connected to the SPI ports of the
microcontroller as shown in Figure 6 [17]. The SPI master in-slave out (MISO) port was mainly used to
retrieve the .wav file for the input audio signal. The speed of the data retrieval was determined by the SPI
serial clock (SCL) frequency.

Figure 6. MicroSD Connector Schematic

As for the amplifier circuit set-up shown in Figure 7, the required circuitry was given by the datasheet of
the amplifier (LM386N-1/NOPB) [16]. The capacitors act as filters for the analog audio signal coming
from the microcontroller’s internal digital-to-analog (DAC) converter output. It basically makes the audio
sound more clearly at the speaker positive port (POS_SPK). Lastly, the amplifier gets its power from the 5
V line of the Power Subsystem.

10

Figure 7. Amplifier circuit for Audio Subsystem

2.4 User Interface Subsystem Design
The design of the UI Subsystem consists of a LCD that communicates with the microcontroller through
I2C communication. The LCD has the potential to display up to 20 characters on two lines. However, the
message displayed by the LCD is seven characters for each audio effect (including no hand gesture
detection) as shown in Table 2.

Table 2. 7-Character Words displayed by the LCD

DISPLAYED 7-CHARACTER MESSAGE AUDIO EFFECT APPLIED

“NO-HAND” No hand gesture detection (normal input audio)

“REVERB!” Reverb

“DISTORT” Distortion

“GAIN-UP” Gain Up

“GAIN-DN” Gain Down

“LO-PASS” Low Pass

A seven character message was chosen since the messages had to be the same number of characters to
achieve timing constraints and a seven character message led to better interpretation of the displayed
message. The “magic” behind the LCD displaying a specific message based on hand gesture is pulled off
through the use of I2C communication between the microcontroller and the LCD [12]. The I2C
communication begins with a start condition (S) and a slave address that gets sent to the LCD on the serial
data (SDA) bus [12]. If the slave address that identifies the controlled device is correct, an
acknowledgement bit gets sent to the microcontroller on the SDA bus [12]. Then, a byte can be sent to the
LCD on the SDA bus to perform an operation on the LCD, and an acknowledgement bit gets sent back to
the microcontroller to confirm that the byte has been received properly by the LCD [12]. For the chosen
LCD, it has a control byte that determines whether the following data byte represents an instruction or
data to be read from/written to the internal RAM [12]. A controller called the ST7036i (embedded within

11

the LCD) handles any action performed on the LCD by looking at the data byte that got written into either
the instruction register or data register [12]. Finally, the communication ends with a stop condition (P)
[12]. The overall I2C communication between the microcontroller and LCD is shown by Figure 8. Note
that the R/W represents the bit that determines whether data is being read from the LCD (bit = 1) or being
sent to be written into the LCD (bit = 0) in either the instruction register or data register [12]. However, a
read operation was not necessary for the intended implementation of the LCD since only characters being
written into the LCD was sought for the design.

Figure 8. I2C communication Write Operation
The LCD datasheet listed different instructions to be used to modify the display settings such as character
size; however, given instructions to initialize the LCD to its normal operation were used instead of having
a custom initialization [12]. These instructions are shown by Figure 9. The most important piece of
sending an instruction is just the delay time in order to give enough time for the controller to execute the
instruction [12]. Overall, the entire LCD software revolved around Figure 8 and Figure 9, and its C code
implementation is shown in the Appendix C section.

Figure 9. Flow Chart of the LCD Initialization
In terms of hardware design on the main PCB, the LCD required pull-up resistors for the SDA bus line
and serial clock (SCL) lines to prevent any short from occurring during I2C communication as shown in
Figure 10. Also, a separate breakout PCB was created in order to position the LCD better in the physical
enclosure of the project design. A description of this enclosure is shown in the Appendix A section. The
LCD breakout PCB connects to the schematic of Figure 10 through the use of jumper wires. Note that the
debugger/programmer connections for the STM32H743VIT6 microcontroller was combined with the
LCD connection header to save space on the main PCB. Those connections require pull-up resistors for
the same reason as the LCD I2C connections.

12

Figure 10. LCD circuit schematic

3. Design Verification
The overall final design of this project consisted of a 3D printed physical enclosure, PCB that contains the
microcontroller, LCD breakout PCB, Raspberry Pi, and Camera. The Power Subsystem, Gesture Control
Subsystem, and UI Subsystem were all implemented in the design. The Audio Subsystem was partially
complete, but it did not fit the full RV table set at the start of the course. Overall, subsystem verification
tests were performed to verify the correctness of the project device. The high-level requirements being
met was determined by the subsystem verification results.

3.1 Power Subsystem Verification Results (Table 3)

Requirement Verification Successful Rationale

The linear
regulator
should provide
3.3 V ± 0.5%
at its output to
the necessary
supply pins of
the custom
PCB.

1. Connect to the 3.3 V
test pin and GND test
pin on custom PCB
using the connectors
coming from an
oscilloscope.

2. Add a measurement
for the average
voltage.

3. Measure the
peak-to-peak voltage
(ripple) using
horizontal cursors of
the oscilloscope.

4. Check if the
peak-to-peak voltage
is at most 0.033 V
which is 0.5% above
and below 3.3 V.

Yes The 3.3 V output coming from the
linear regulator was stable at 3.29575
V which is within the minus 0.5%
range. Thus, the requirement was met
and the oscilloscope reading is shown
below in Figure 11.

13

Figure 11. Power Subsystem Verification Test

Overall, the required voltage for most of the components of the PCB was achieved which means each
component such as the microcontroller has enough power to work properly in the circuit.

3.2 Gesture Subsystem Verification Results (Table 4)

Requirements Verifications Successful Rationale

The image processing
algorithm that
analyzes the captured
images from the
camera must have a
timing of at least 20
frames per second to
get an accurate
detection of a hand
gesture.

1. Use the <time.h> and time() library
to measure the start and end time for
a single while loop iteration (used to
capture/read an image from the
camera using OpenCV library).

2. Create the variable that stores the
start time.

3. Create the variable that stores the
end time.

4. Subtract the variable storing the start
time from the variable that stores the
end time.

5. Take the reciprocal of that value to
get the number of frames that got
analyzed per second. Note that this
procedure is for software done in
C++.

Yes A timestamp was
created within the
gesture detection
script to measure
the time it took for
a single while
loop iteration that
contains the read
function for a
single captured
frame and the
measured fps of
the while loop
was around 24
frames per
second. This gives
a sense of
accuracy where
the algorithm is
not taking too
long to analyze an
image before
reading the next

14

captured image.

The gesture detection
algorithm must detect
a hand gesture in less
than 5 seconds.

1. Connect the female end of a jumper
wire to each STATE signal (3 in
total) of the Raspberry Pi’s pin
headers.

2. Connect the male end of each jumper
wire to a respective LED’s cathode
pin on a breadboard.

3. Connect each LED’s anode pin to a
respective male end of a jumper wire
on the breadboard.

4. Connect the female end of each
jumper wire (connected to LED
anode pin) to its respective STATE
pin connector on the custom PCB.

5. Start a timer for when the three
LEDs are off (default state) and
another person makes a hand gesture
to the camera.

6. Stop timer until the LEDs change to
an applied audio effect state.

Yes A total of 50 hand
gestures were
shown to the
camera. The timer
started from when
the gesture was
made to when the
LEDs changed
color. On average,
it took about three
seconds which
meets the
requirement.

A testbench was created to evaluate the five second timing constraint of the Gesture Control Subsystem in
a modular manner. In Figure 12, there is a Raspberry Pi Model 3b and its three GPIO pins are connected
on a breadboard to their respective LEDs. Each LED represents one of the three control bits that the
Raspberry Pi would pass to the microcontroller of the main PCB. Using this circuitry setup, an average
timing of three seconds was measured which fits the subsystem requirement.

Figure 12: Gesture detection Subsystem Modular Test Bench

15

3.3 Audio Subsystem Verification Results (Table 5)

Requirement Verification Successful Rationale

The sound
being
outputted by
the speaker
must be less
than 80 dB
for safety
purposes

1. Connect the audio source to the
input of the Audio Subsystem.

2. Set the audio source to produce a
continuous sine wave signal at 1
kHz.

3. To measure the sound db, a sound
level meter app on a phone will be
used. Position the Sound Level
Meter at a distance of 1 meter
from the speaker, aligned with the
center of the speaker.

4. Increase the volume of the audio
source until the sound level meter
stabilizes.

5. Record the maximum sound
pressure level (SPL) reading
displayed by the Sound Level
Meter.

6. Repeat the procedure three times
and calculate the average SPL to
ensure reliability.

No
The microSD connector and
amplifier did not arrive on
time so a speaker test was
not possible.

The effect
applied to
the input
audio signal
must be
heard clearly
such that
there should
not be any
static sound
unless it is a
distortion
audio effect

1. Connect the audio source to the
Audio Subsystem's input and the
output to both the Audio Analyzer
and headphones/speakers.

2. Set the audio source to produce a
clean sine wave signal at 1 kHz.

3. Apply the desired audio effect
using the microcontroller within
the Audio Subsystem.

4. Conduct a subjective listening test
by playing the processed audio
through headphones/speakers and
noting any static noise or
undesired artifacts.

5. Adjust the effect parameters and
repeat the test if static noise is
detected in the absence of a
distortion effect. Add data to
report

Yes
The audio effects were able
to be tested on a separate
compiler. All audio effects
were tested successfully and
the quality of sound did not
contain any static sound
besides the distortion effect.

16

The Audio Subsystem hardware was not tested due to delay of the arrival of components; however the
audio effects code was able to be tested separately to see the applied audio effect on the input audio
signal. Figure 13 compares the original wav file on top to the distorted version of the audio below it. From
this figure, it is observed that the distortion effect is being applied due to the amplitude flattening out.

Figure 13. Audio Effect Showcase of Distortion

3.4 UI Subsystem Verification Results (Table 6)

Requirement Verification Successful Rationale

The display must show
the user what audio
effect has been applied
to the input audio signal,
0.1 seconds (at most)
after the microcontroller
communicates with it via
I2C that a unique hand
gesture has been
detected by the gesture
detection algorithm.

1. Connect the female end
of a jumper wire to each
STATE signal (3 in total)
of the Raspberry Pi’s pin
headers.

2. Connect the male end of
each jumper wire to a
respective LED’s cathode
pin on a breadboard.

3. Connect each LED’s
anode pin to a respective
male end of a jumper
wire on the breadboard.

4. Connect the female end
of each jumper wire
(connected to LED anode
pin) to its respective
STATE pin connector on
the custom PCB.

5. Start a timer for when the
three LEDs change to a
new STATE value.

6. Stop timer until the
display changes to the
STATE value’s name. If

Yes Based on the UI
subsystem software, it
would take less than 50
ms for an entire
7-character word to be
displayed after the 3-bit
STATE variable
changes. Thus, the
requirement was met
since that is much
smaller than 0.1 seconds
(100 ms). In order to get
a timestamp to see the
fast timing, the UART
ports would have been
needed to see a timestop
measurement on a
computer’s console.
However, UART was
not implemented into
the PCB design since it
was not necessary in
terms of functionality of
the project.

17

we cannot time how
quickly it is, safe enough
to say it's quicker than .2
seconds

3.5 High Level Requirement Verification Results (Table 7)

Requirement Successful Rationale

The gesture-controlled audio
effects processor is able to detect
hand gestures using a camera with
95% accuracy +-5% within 5
seconds of making the gesture.

Yes A testbench was made where the GPIO pins are
connected to LEDs on a breadboard. Hand gestures
were made in front of the camera and a timer was
recorded once the LEDs changed to a different state
and correctness was verified between hand gesture
and state. 50 gestures were done in front of the
camera and the average time was about three
seconds. Due to satisfying both subsystem
requirements, the accuracy of hand gesture
detection was about 98%.

The gesture-controlled audio
effects processor is able to apply 5
digital effects to an audio signal
and apply that effect to the external
speaker within a 1 second of
receiving a signal from the gesture
detection subsystem with a
tolerance of +-½ of a second.

Yes Code was written for the microcontroller to take in
a GPI and apply five different effects, but due to
parts not arriving on time and components breaking
during soldering, did not have time to test the
speaker. However, code was tested for each effect
on a regular c compiler and verified that the code
for each effect functioned properly. Also, tested
how long it takes for the audio algorithm to go
through the main while loop that controls which
effect is played and we got around 50ms for each
effect.

The external display should
accurately show the current playing
sound effect with 99% accuracy
with a tolerance of +-1%

Yes The software for the LCD was able to go through
each loop in less than 50 ms which satisfies a
subsystem requirement. As a result of this speed,
the LCD was able to accurately show the audio
effect applied based on the selected hand gesture
every time.

4. Costs

All the parts needed for the project design are listed in Appendix B. After summing the cost for each part,
the total part cost is $148.63. For each partner, the typical hourly rate is $50 per hour. Thus, $150 per hour
is the hourly rate for all three people in the group. As for the hours needed to complete the project, about
an average 20 hours per group member per week for the entire next eight weeks which is a total of 480

18

hours. As a result, the total labor cost after multiplying by a 2.5x overhead multiplier would be $180000.
As a result, the total cost is calculated to be $180148.37.

5. Schedule
A weekly schedule about how tasks would be divided up between each team member is shown in Table 8.

Table 8. Weekly Schedule

Week Task Person

February 26 Order all components Everyone

Assign high level subsystems to
each member

Everyone

Schematic Completed Sergio

Install prerequisite software on
Raspberry Pi

Sarthak

Finalize five audio effects for
our project

Zachary

March 4 PCB Done & audited (delayed) Sergio

Be able to view camera from Pi Sarthak

Write/Test DSP code on
computer for five effects

Zachary

March 11 Spring Break

March 18 Test Power System (delayed)
First PCB Version Done &
Ordered PCB

Sergio

Test Audio System software Zach

Be able to detect a hand Sarthak

March 25 Begin writing I2C code for LCD Sergio

Ordered a revised PCB with a
breakout PCB for the LCD

Everyone

Write at least one effect on the
microcontroller

Zach

Successfully detect a single hand
gesture and be able to output
information to a breadboard

Sarthak

19

April 1 Hand gestures work Sarthak

Finish LCD code Sergio

Integrate SD card & speaker Zach

April 8 Integrate software with
microcontroller (delayed)

Sarthak

Begin 3D Design Enclosure Sarthak

Began soldering parts but ran
into issue with soldering the
microcontroller. Had to order a
new microcontroller.

Sergio & Zach

April 15 Had to order new audio parts
due to not being salvageable
from desoldering into a new
PCB. Microcontroller arrived
and got soldered onto the new
PCB.

Sergio

Managed to program
microcontroller and connect
Raspberry Pi to LCD breakout
board. Still waiting for new
audio parts.

Everyone

Print 3D enclosure Sarthak

April 22 Tested Power Subsystem,
Gesture Control Subsystem, and
UI Subsystem the day prior to
final demo. Audio parts did not
arrive until the day of the final
demo.

Everyone

April 29 Final Report Work Everyone

6. Conclusion

6.1 Accomplishments
In the end, the STM32H7 microcontroller was able to be programmed to interact with the LCD and
Raspberry Pi. This accomplishment helped show that the Gesture Control subsystem works based on what
is being displayed by the LCD. In addition, power was able to be delivered properly throughout the main
PCB, Raspberry Pi, and LCD breakout board. Moreover, there were no shorts or improper soldering that
impacted the functionality of the final project design such as a burnt out component.

20

6.2 Uncertainties
One primary challenge in this project was the delayed arrival of components and frequent shipping
setbacks. Often, the components we received were either incorrect or damaged. Additionally, we
encountered issues with components being damaged during soldering; this was exacerbated by the
unexpected small size of many components, such as the STM32 pins, which measured approximately
0.49mm each across a 100-pin chip. We also overlooked the PCB size, requiring significant adjustments
to accommodate all components within the required dimensions. Toward the project's conclusion,
multiple ST-Links failed, further reducing our time to debug the UI subsystem.

6.3 Ethical considerations
IEEE ethics code II.7 emphasizes treating all individuals equitably and avoiding discrimination based on
race, religion, gender, and other characteristics. This project could aid individuals with disabilities,
potentially making the technology essential for audio-related tasks. To avoid exploiting this necessity with
high prices, similar to certain prescription drugs, we commit to setting fair prices if we commercialize this
product.

Secondly, IEEE ethics code I.1 prioritizes public safety, health, and welfare, emphasizing ethical design
and privacy protection. Our use of a camera raises privacy concerns. To mitigate risks, we will not
connect the device to the internet, eliminating the possibility of cyberattacks. All camera processing will
be localized, ensuring privacy.

Lastly, IEEE ethics II mandates fair treatment and non-discrimination, while emphasizing harm
prevention. Our product includes a speaker that could potentially damage hearing if audio is too loud or
malicious. We will restrict audio playback to pre-approved files and use a speaker incapable of producing
harmful sound levels to prevent any hearing damage.

6.4 Future work
The first set of future work for this project is fixing the subsystems which were not operational at the time
of demo. This was mainly the audio subsystem and getting it working on the PCB would be the last step
until we completed all of the requirements initially set for this project.

Once that is completed there are a few ideas to build on the current implementation

6.4.1 Custom Neural Net
Currently, we are using a pre-trained model from Google’s mediapipe to get joint data from a jpeg. It
works for our cases, but if we trained our own model which was only meant to detect gestures, then its
accuracy and speed would increase with enough training data. We could create a simple convolutional
neural network and feed it images of gestures and the correct label.

6.4.2 Bluetooth Audio
Currently, the quality of the audio effects are limited by the quality of the speaker soldered to our PCB. If
the speaker isn't the best quality many may not be able to hear the nuances of different effects. Creating a
bluetooth audio adapter would allow for us to send raw wav files and leverage superior hardware to hear
more detail in the audio effects.

21

6.4.3 Custom Gesture Mapping
Currently, we hard code the audio effect that corresponds to each hand gesture. However, if this was a
product we would sell to potential musical artists, they should have the ability to customize different
gestures and what audio effect it corresponds to.

Appendix A - Physical Enclosure

Visual Aid
On a high level, the final product would contain a camera, a speaker, and the electronics in between. The
camera would be monitoring the hands of someone who is in view of the camera. In this example let's say
an effect “x” is triggered by a thumbs up. In a standby state, we will be playing some audio files out of the
speaker with no effects.

Once the camera detects a thumbs up it will send the proper signal to our PCB which will then pass all the
audio signals through a system which will apply the “x”. That effect will remain on until another gesture
is shown in the camera & there will be a gesture for “normal”.

Figure 14a High-Level Overview of the Hands Gesture Audio Effects System

In terms of how the physical design will look we suspect there to be a camera viewing the subject and a
speaker/display facing in the same direction all inside of one box. In section 2.2 we will expand on this
idea.

22

Figure 14b Physical design initial vision

Physical Design
The illustration of Figure 3 shows our physical enclosure appearance. Inside of this box, there will be a
Raspberry Pi, PCB, and other components necessary for the function of the system. At the top, there will
be a camera followed by a display unit, and then a speaker. On the right side of the enclosure, there will
be a microSD card insert that will hold the audio file being modified by an audio effect. In addition, there
is a DC power jack which will be connected to an outlet using a 5V 4.5A wall power adapter.

For the moment, there are no omitted dimensions on this diagram since there is no information about the
dimensions of the custom PCB. Once there is a rough draft of the PCB board dimensions, then a decision
can be made on how it will be mounted with the other components to the physical enclosure.

Figure 15. Initial vision for physical design

There was a design alteration for the actual physical enclosure appearance after looking at the dimensions
of the LCD breakout board and main PCB with microcontroller. Figure 16 and Figure 17 shows the front
and side view of the physical enclosure with the setup of the subsystems being connected with one
another.

23

Figure 16: Side view of physical enclosure

Figure 17: Front view of physical enclosure

Appendix B - Component List
UI Subsystem Component List:
1 x NHD-C0220BIZ-FSW-FBW-3V3M (Liquid Crystal Character Display Module)
Gesture Control Subsystem Component List:

1 x Raspberry Pi 3 Model B

1 x RPI-CAM-V2 (Camera module that detects hand gestures)

24

Power Subsystem Component List:

1 x LM1085ISX-3.3/NOPB (Linear regulator for 3.3 V power supply)

1 x WSU050-4000 (5 V 4.0 A wall power supply)

1 x PJ-102AH (DC Barrel Jack Connector for wall power supply)

1 x 87583-3010RPALF (USB-A connector soldered on custom PCB)

1 x USBAM11851M2MICBBK5A (USB-A to microUSB B Cable for Raspberry Pi Power)

1 x TPS259814ARPWR (eFuse for safety protection if user plugs in the incorrect power supply)

Audio System Component List:

1 x STM32H743VIT6 (Microcontroller)

1 x ECS-400-8-36B-7KY-TR (Crystal Oscillator)

1 x MSD-4-A (MicroSD Connector)

1 x S312TLKJM-C1000-3 (MicroSD 128 Mb)

1 x D6R90 F2 LFS (Push Button for MCU Reset)

1 x LM386N-1/NOPB (Amplifier for Audio DAC output)

1 x SPKM.15.8.A (Speaker to hear audio)

Detailed Cost of Parts Breakdown

Table 9. Project Parts Cost and Description
Manufacturer
(Purchase link
hyperlinked)

Part # Quantity Cost Description

STMicroelectronics STM32H743VIT6 1 $15.83

ARM® Cortex®-M7 STM32H7
Microcontroller IC 32-Bit Single-Core

480MHz 2MB (2M x 8) FLASH
100-LQFP (14x14)

CUI Devices MSD-4-A 1 $0.35
9 (8 + 1) Position Card Connector
microSD™ Surface Mount, Right

Angle Gold

Delkin Devices, Inc. S312TLKJM-C1000-3 1 $7.80 Memory Card microSD™ 128MB

25

https://www.digikey.com/en/products/detail/stmicroelectronics/STM32H743VIT6/7809237
https://www.digikey.com/en/products/detail/cui-devices/MSD-4-A/21796808?s=N4IgTCBcDaILIGUAiBaALCggiAugXyA
https://www.digikey.com/en/products/detail/delkin-devices-inc/S312TLKJM-C1000-3/13882291?s=N4IgTCBcDaIMoGYCMYAqAZA0gKQLIFoBhJABjPwRAF0BfIA

Class 10, UHS Class 1 SLC

Amphenol ICC (FCI) 87583-3010RPALF 1 $1.08
USB-A (USB TYPE-A) USB 2.0
Receptacle Connector 4 Position
Surface Mount, Right Angle

Texas Instruments LM1085ISX-3.3/NOPB 1 $1.99
Linear Voltage Regulator IC Positive

Fixed 1 Output 3A TO-263
(DDPAK-3)

CUI Devices PJ-102AH 1 $0.70
Power Barrel Connector Jack 2.00mm
ID (0.079"), 5.50mm OD (0.217")

Through Hole, Right Angle

Newhaven Display
Intl

NHD-C0220BIZ-FSW-F
BW-3V3M 1 $11.41

Character Display Module
Transflective 5 x 8 Dots FSTN - Film
Super-Twisted Nematic LED - White
I2C 75.70mm x 27.10mm x 6.80mm

Triad Magnetics WSU050-4000 1 $13.32 5V 20 W AC/DC External Wall Mount
(Class II) Adapter Fixed Blade Input

C&K D6R90 F2 LFS 1 $1.53 Pushbutton Switch SPST-NO
Keyswitch Through Hole (0.1 A 3V)

SparkFun Electronics PRT-12796 Bulk $2.10 Jumper Wire Female to Female 6.00"
(152.40mm) 28 AWG

Würth Elektronik 61300311121 Bulk $0.13 Connector Header Through Hole 3
position 0.100" (2.54mm)

CNC Tech 3220-10-0300-00 1 $0.78 Connector Header Surface Mount 10
position 0.050" (1.27mm)

Seeed Technology
Co., Ltd 114991786 1 $8.70

STM8, STM32 - Debugger
(In-Circuit/In-System)

SIPEED USB-JTAG/TTL RISC-V
DEBUG

Raspberry Pi SC0022 1 $35.00

Raspberry Pi 3 Model B
Single Board Computer 1.2GHz 4 Core
1GB RAM ARM® Cortex®-A53,

VideoCore

Raspberry Pi RPI-CAM-V2 1 $35.00
Sony IMX219 image sensor custom
designed add-on board for Raspberry

Pi

GlobTek, Inc. USBAM11851M2MICB
BK5A 1 $6.08 Cable A Male to Micro B Male 3.94'

(1.20m) Shielded

Texas Instruments LM386N-1/NOPB 1 $1.28 Amplifier IC 1-Channel (Mono) Class
AB 8-PDIP

26

https://www.digikey.com/en/products/detail/amphenol-cs-fci/87583-3010RPALF/4266975?s=N4IgTCBcDaIBwHYCscDMBaVAGAjFgSgAoCCAMgGIgC6AvkA
https://www.digikey.com/en/products/detail/texas-instruments/LM1085ISX-3-3-NOPB/366710?s=N4IgTCBcDaIDIFkCMAGAHAVgJIGUAaAtAMwB0RA9AHIDyACgEIgC6AvkA
https://www.digikey.com/en/products/detail/cui-devices/PJ-102AH/408448
https://www.digikey.com/en/products/detail/newhaven-display-intl/NHD-C0220BIZ-FSW-FBW-3V3M/2626407?s=N4IgTCBcDaIHIAkAiBaAwgBjGDAhAkgFooBiAygOqm5UDMAarQLIgC6AvkA
https://www.digikey.com/en/products/detail/newhaven-display-intl/NHD-C0220BIZ-FSW-FBW-3V3M/2626407?s=N4IgTCBcDaIHIAkAiBaAwgBjGDAhAkgFooBiAygOqm5UDMAarQLIgC6AvkA
https://www.digikey.com/en/products/detail/triad-magnetics/WSU050-4000/3094945
https://www.digikey.com/en/products/detail/c-k/D6R90-F2-LFS/1466352?s=N4IgTCBcDaICIDYBKBOADAAgGJgwGSwGUQBdAXyA
https://www.digikey.com/en/products/detail/sparkfun-electronics/PRT-12796/5993861?s=N4IgTCBcDaIAoCUAqBaAjGA7ATgGwgF0BfIA
https://www.digikey.com/en/products/detail/w%C3%BCrth-elektronik/61300311121/4846825?s=N4IgTCBcDaIGwEYDMAGFSGbAkBdAvkA
https://www.digikey.com/en/products/detail/cnc-tech/3220-10-0300-00/3883266
https://www.digikey.com/en/products/detail/seeed-technology-co-ltd/114991786/10060366?s=N4IgTCBcDaIIxwCwE5lwOwA4BsIC6AvkA
https://www.digikey.com/en/products/detail/seeed-technology-co-ltd/114991786/10060366?s=N4IgTCBcDaIIxwCwE5lwOwA4BsIC6AvkA
https://www.digikey.com/en/products/detail/raspberry-pi/SC0022/6152799
https://www.digikey.com/en/products/detail/raspberry-pi/SC0872/17278639?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Low%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20243063506_adg-_ad-__dev-c_ext-_prd-17278639_sig-CjwKCAiA_tuuBhAUEiwAvxkgTss43JaBhkiZEcC9GkL_WUL0S2aOoulSqnIl9Zvqikyjii9qBdVUOhoCn9EQAvD_BwE&gad_source=1&gclid=CjwKCAiA_tuuBhAUEiwAvxkgTss43JaBhkiZEcC9GkL_WUL0S2aOoulSqnIl9Zvqikyjii9qBdVUOhoCn9EQAvD_BwE
https://www.digikey.com/en/products/detail/globtek-inc/USBAM11851M2MICBBK5A/14318865
https://www.digikey.com/en/products/detail/texas-instruments/LM386N-1-NOPB/6284

Taoglas Limited
SPKM.15.8.A 1 $1.74 8 Ohms General Purpose Speaker 500

mW 10 Hz ~ 11 kHz Top Round

Texas Instruments
TPS259814ARPWR 1 $1.37 Electronic Fuse Regulator High-Side

10A 10-VQFN-HR (2x2)

Stackpole Electronics
Inc CF14JT10K0 10 $0.53

10 kOhms ±5% 0.25W, 1/4W Through
Hole Resistor Axial Flame Retardant

Coating, Safety Carbon Film

Cal-Chip Electronics,
Inc. GMC02X5R105M10NT 3 $0.30

1 µF ±20% 10V Ceramic Capacitor
X5R 0201 (0603 Metric)

Samsung
Electro-Mechanics CL10A475KP8NNNC 2 $0.20

4.7 µF ±10% 10V Ceramic Capacitor
X5R 0603 (1608 Metric)

Samsung
Electro-Mechanics CL10B225KP8NNNC 4 $0.40

2.2 µF ±10% 10V Ceramic Capacitor
X7R 0603 (1608 Metric)

Samsung
Electro-Mechanics CL05B104KP5NNNC 10 $0.15

0.1 µF ±10% 10V Ceramic Capacitor
X7R 0402 (1005 Metric)

Appendix C - Software Implementation of UI and Audio Subsystem.

UI Subsystem
The UI Subsystem code took advantage of the use of the HAL Master Transmit Function shown in Figure
18. Also, the I2C communication that occurs when this function gets called is shown by Figure 19.

Figure 18. HAL function called for I2C Write Operation

27

https://www.digikey.com/en/products/detail/taoglas-limited/SPKM-15-8-A/16496635
https://www.digikey.com/en/products/detail/texas-instruments/TPS259814ARPWR/18159764
https://www.digikey.com/en/products/detail/stackpole-electronics-inc/CF14JT10K0/1741265
https://www.digikey.com/en/products/detail/stackpole-electronics-inc/CF14JT10K0/1741265
https://www.digikey.com/en/products/detail/cal-chip-electronics-inc/GMC02X5R105M10NT/13908717
https://www.digikey.com/en/products/detail/cal-chip-electronics-inc/GMC02X5R105M10NT/13908717
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL10A475KP8NNNC/3886702?s=N4IgTCBcDaIMIBkCMAGAggFgOwFYDSACgBwByZcIAugL5A
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL10A475KP8NNNC/3886702?s=N4IgTCBcDaIMIBkCMAGAggFgOwFYDSACgBwByZcIAugL5A
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL10B225KP8NNNC/3886792?s=N4IgTCBcDaIMIBkCMAGAQmMBWA0gBQA4A5EuEAXQF8g
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL10B225KP8NNNC/3886792?s=N4IgTCBcDaIMIBkCMAGAQmMBWA0gBQA4A5EuEAXQF8g
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL05B104KP5NNNC/3886660?s=N4IgTCBcDaIMIBkAMBWAQgRiQFgNIAUUA5EuEAXQF8g
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL05B104KP5NNNC/3886660?s=N4IgTCBcDaIMIBkAMBWAQgRiQFgNIAUUA5EuEAXQF8g

Figure 19. I2C Write Operation Communication Based on called HAL function

A void function was created just to initialize the LCD before the iterative while loop starts. The init_LCD
function shown by Figure 20 was translated from the flow chart shown in Figure 9. As stated before, the
most important piece is adding delays between each instruction that gets sent to the LCD. The first 0x00
byte is just the control byte for each buffer and the next byte is the data byte representing an instruction.
Also, there is an error handler that triggers whenever something goes wrong with the I2C communication
such as no ack bit being sent to the microcontroller to confirm that the sent byte has been received
properly by the LCD.

Figure 20. init_LCD code snippet

The following code snippet described by Figure 21 is just an example of how one of the seven-character
messages gets sent to the LCD, specifically the low-pass filter audio effect message. Basically, the first
byte is the control byte that confirms data is being written into the data register of the LCD. The following
byte is just the character code of the letter or dash character that is to be written to the LCD. Note that

28

stating a register address for the placement of the character is not necessary since there’s a register address
counter that increases by one for each HAL write operation call.

Figure 21. Code snippet of Low Pass Filter Audio Effect Message Case

The next two figures (Figure 22 and Figure 23) shows the entire code within the while loop iteration.
Figure 22 shows the three control state bits (from Raspberry Pi) being read and they get combined into a
decimal number. This decimal number gets read by the switch-case block shown in Figure 23 and calls
the respective void function to write the audio effect seven-character message defined by that decimal
number (control state).

29

Figure 22. Three-Bit Control state being read

Figure 23. Switch-case block that determines audio effect message to display to LCD

30

Audio Subsystem
The stm32cube code for the audio effects has the following functions: ApplyGain,ApplyReverb,

applySoftClipping(distortion), PlayRegularAudio, ReadGesture, ReadAudioFile, and ProcessAudioEffects

31

32

33

34

References
[1] Motorola Semiconductor Data Manual, Motorola Semiconductor Products, Inc., Phoenix, AZ, 2007.

[2] Double Data Rate (DDR) SDRAM, datasheet, Micron Technology, Inc., 2000. Available at:

http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf

[3] Linx Technologies LT Series, web page. Available at:

http://www.linxtechnologies.com/products/rf-modules/lt-series-transceiver-modules/. Accessed
January 2012.

[4] J. A. Prufrock, Lasers and Their Applications in Surface Science and Technology, 2nd ed. New York,

NY: McGraw-Hill, 2009.

[5] W. P. Mondragon, “Principles of coherent light sources: Coherent lasers and pulsed lasers,” in Lasers

and Their Applications in Surface Science and Technology, 2nd ed., J. A. Prufrock, Ed. New York, NY:

McGraw-Hill, 2009, pp. 117-132.

[6] G. Liu, “TDM and TWDM de Bruijn nets and shuffle nets for optical communications,” IEEE

Transactions on Computers, vol. 59, no. 1, pp. 695-701, June 2011.

[7] S. Al Kuran, “The prospects for GaAs MESFET technology in dc–ac voltage conversion,” in

Proceedings of the Fourteenth Annual Portable Design Conference, 2010, pp. 137-142.

[8] K. E. Elliott and C. M. Greene, “A local adaptive protocol,” Argonne National Laboratory, Argonne, IL,

Tech. Rep. 916-1010-BB, 2006.

[9] J. Groeppelhaus, “Java 5.7 tutorial: Design of a full adder,” class notes for ECE 290, Department of

Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 2011.

[10] STMElectronics, “STM32H742xI/G STM32H743xI/G Datasheet”,

https://www.st.com/resource/en/datasheet/stm32h743bi.pdf

[11] Amphenol ICC (FCI), “87583-3010RPALF (USB-A connector) Datasheet”,
https://www.amphenol-cs.com/media/wysiwyg/files/drawing/87583.pdf

[12] Newhaven Display Intl, “NHD-C0220BIZ-FSW-FBW-3V3M Datasheet”,
https://newhavendisplay.com/content/specs/NHD-C0220BiZ-FSW-FBW-3V3M.pdf

[13] Texas Instruments, “LM1085ISX-3.3/NOPB Datasheet”,
https://www.ti.com/lit/ds/symlink/lm1085.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1711
522636510&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproduc
tinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%2
52Fgpn%252Flm1085

35

http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf
http://www.linxtechnologies.com/products/rf-modules/lt-series-transceiver-modules/
https://www.st.com/resource/en/datasheet/stm32h743bi.pdf
https://www.amphenol-cs.com/media/wysiwyg/files/drawing/87583.pdf
https://www.amphenol-cs.com/media/wysiwyg/files/drawing/87583.pdf
https://newhavendisplay.com/content/specs/NHD-C0220BiZ-FSW-FBW-3V3M.pdf
https://newhavendisplay.com/content/specs/NHD-C0220BiZ-FSW-FBW-3V3M.pdf
https://www.ti.com/lit/ds/symlink/lm1085.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1711522636510&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Flm1085
https://www.ti.com/lit/ds/symlink/lm1085.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1711522636510&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Flm1085
https://www.ti.com/lit/ds/symlink/lm1085.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1711522636510&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Flm1085
https://www.ti.com/lit/ds/symlink/lm1085.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1711522636510&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Flm1085
https://www.ti.com/lit/ds/symlink/lm1085.pdf?HQS=dis-dk-null-digikeymode-dsf-pf-null-wwe&ts=1711522636510&ref_url=https%253A%252F%252Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Flm1085

[14] Texas Instruments, “TPS259814ARPWR Datasheet” ,
https://www.ti.com/lit/ds/symlink/tps25981.pdf?ts=1694724042849&ref_url=https%253A%252F%252F
www.ti.com%252Fproduct%252FTPS25981

[15] CUI Devices, “Micro SD Card Connector Datasheet”,
https://www.cuidevices.com/product/resource/digikeypdf/msd-4-a.pdf

[16] Texas Instruments, “Amplifier Datasheet”,
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=http%253A%252F%252Fwww
.ti.com%252Flit%252Fgpn%252Flm386

[17] “SD Card.”Wikipedia, Wikimedia Foundation, 29 Apr. 2024, en.wikipedia.org/wiki/SD_card.

[18] Raspberry Pi, “Raspberry Pi 3 Model B Datasheet. ” [Online}. Available:

https://us.rs-online.com/m/d/4252b1ecd92888dbb9d8a39b536e7bf2.pdf

36

https://www.ti.com/lit/ds/symlink/tps25981.pdf?ts=1694724042849&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS25981
https://www.ti.com/lit/ds/symlink/tps25981.pdf?ts=1694724042849&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS25981
https://www.ti.com/lit/ds/symlink/tps25981.pdf?ts=1694724042849&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS25981
https://www.cuidevices.com/product/resource/digikeypdf/msd-4-a.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=http%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Flm386
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=http%253A%252F%252Fwww.ti.com%252Flit%252Fgpn%252Flm386
https://us.rs-online.com/m/d/4252b1ecd92888dbb9d8a39b536e7bf2.pdf

