

S-Band Radar Altimeter ECE 445

Elliot Rubin, Rayan Nehme, Bobby Sommers

April 30, 2024

Team Members

Bobby Sommers

Elliot Rubin

Rayan Nehme

Consumer drones rely on GPS or IR sensing for navigation or terrain avoidance

• GPS and IR are not the most efficient or reliable (poor performance in urban environments/indoors)

Solution is a cost effective S band radar altimeter which can be mounted on consumer drones

- FMCW radar architecture is well-documented and inexpensive to build
- Distance and velocity/Doppler measurements

High-level requirements:

- Minimum range > 20m
- Receiver noise figure < 10 dB
- Range resolution better than 1.5m

Whole system partitioned into 3 subsystems

Radar unit

 All analog/RF xceiver hardware, Tx/Rx antennas

Power unit

• Power protection, power bus generation

Processing unit

- Digital processing and data conversion hardware
- MCU, ADC/DAC, storage

Block Overview: Radar Unit

Radar transceiver with Tx/Rx chains and homemade antennas

LO, amplifiers, mixers integrated onto one board

Baseband filtering achieved by second circuit card

Requirements:

- < 2W power consumption
- VCO second harmonic < -20 dBc
- PA/LNA stable (µ > 1) across operating band, 2250 -2500 MHz

Changes: Radar Unit

Changes to radar unit were motivated by issues finding parts and poor RF performance/ease of testing

LNA/PA oscillation necessitated redesign

• Destruction of parts -> extra \$

Directional coupler was expensive/difficult to solder

• Replaced with COTS power splitter

Anti aliasing filter was expensive and hard to test

- Expensive components
- Required DC offset, limited dynamic range
- Used breadboard-based LPF instead

5V LDO not used on final board spin

Radar Unit V1

Radar Unit V1.5 (V2)

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Block design at its most extreme

Modular - populate only what is necessary

Third time's the charm - 3rd and final revision was the only fully performant RF board

Cantennas

Radar Unit Verification

Power consumption verified to be ~2W using latest version of amplifier boards along with a COTS amplifier

custom amplifier boards were far more efficient!

VCO second harmonic found to be -39.4 dBc after low pass filter

• almost 20 dB better than original spec of -20 dBc

Stability factor for both PA and LNA uniformly greater than 1 for 100 kHz - 3.8 GHz

$$\mu_{ES} = \frac{1 - |S_{11}|^2}{|S_{22} - S_{11}^*D| + |S_{12}S_{21}|} > 1$$
$$D = S_{11}S_{22} - S_{12}S_{21}$$

Functionality

Block Overview: Power Processing Unit

Power and processing unit consolidated onto one board

Power Requirements

- Reverse polarity protection
- Must contain fuse that will open when >2.5A flows through it
- Under voltage protection
- Vpp ripple for 10V supply must be <0.3V
- Vpp ripple for 3V3, 3V0, 5V supplies must be <0.1V

Processing Requirements

• Distance error rate must be <10%

Power Unit Verification

- Reverse polarity was tested by connecting 3.7V across the smart diode in reverse to check that it acted as an open circuit
- Fuse was tested to open when injecting more than 2.5A through it
- Undervoltage protected was integrated into the Li-Ion battery, however this battery was scrapped due to inability to safely charge it
- Ripple voltage was ensured by probing each voltage supply and measuring the peak to peak voltage on the oscilloscope

Processing Unit Verification

- First test with Scopy: Used Scopy to check whether SPI was sending data
- Second test with Scopy: Test to see whether SPI and ADC work simultaneously
- Test with Arduino: Examined the terminal to see if digital values were being outputted
- While still using MPlab we were hoping to use "printf" statements to debug

- Distance Error Rate < 10%
- Used equation to calculate distance
- Compared to value from Barometric sensor
- Not able to get data

$$R = \frac{Tcf_r}{2(f_{max} - f_{min})}$$

Conclusion/Future Work

- Learned a lot while attempting to complete this very challenging project
- The use of a ESP or STM32 microcontroller as opposed to a PIC
- Better way to power our PCBs instead of the Li-Ion battery
- Implement PLL rather than VCO for the proper beat frequency

Questions?