

Self-Adjusting Volume Pedal Noah DuVal, Chris Jurczewski, Norbert Lazarz

Team 34

April 29th, 2024

Problem

- Solo guitarists are unable to change the volume of their amp without interrupting their work
- Before a session or in between songs, the guitarist has to set the perfect volume depending on their venue
- Volume pedals are an alternative, however prevent the player from being mobile

Solution

- Our product aimed to solve this by automatically adjusting volume based on distance from the player
- Allows the volume to be set in advance
- Anywhere in the room, the guitarist would hear the same decibel level

Block Diagram

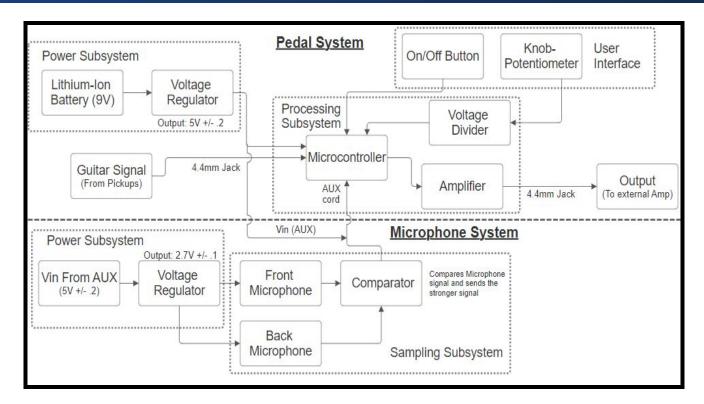
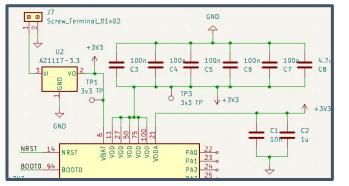


Figure 1: Block Diagram

Video



ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

R&V Tables

Figure 2: Power Circuit

Requirement	Verification
Must be able to supply rated voltage for each component within a +/- 0.2V tolerance after going through voltage regulators.	 Open up the pedal to expose components. After each component, verify what voltages are read before the Vcc pins and compare to rated voltage values.
On/Off Button works properly	 Switching this button will accurately turn on and off the voltage in the whole circuit.+

Table 1: Power R&V

Power Subsystem

- 9V Lithium ion battery for external power
- 3.3V supplied to the whole system
- String of Capacitors for decoupling

R&V Tables

User Interface

- Push button
 - When on LED turns on and system alters guitar signal
 - When off LED is off and signal is unaltered
- Volume Knob
 - 100k Potentiometer used to set desired volume

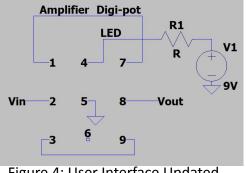
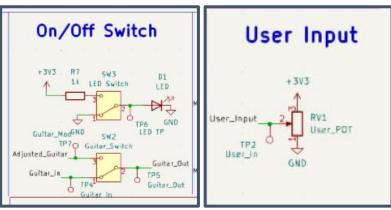
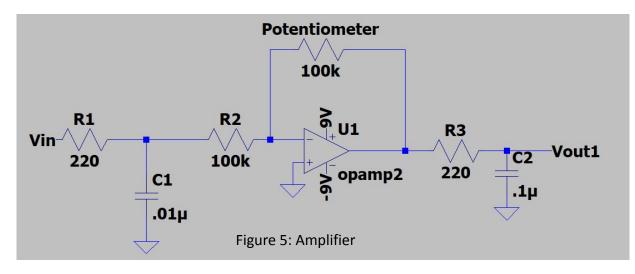



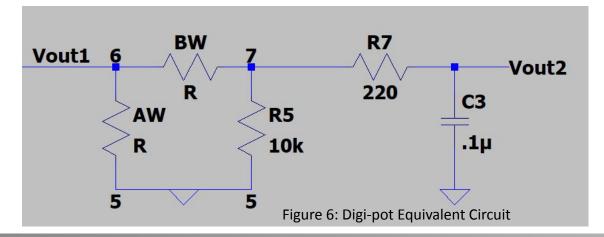
Figure 4: User Interface Updated

Figure 3: User Interface Old


Requirement	Verification
Knob appropriately sets volume at the user's location to volume within 5% of selected dB.	 User interface will be turned to a maximum value in dB and the guitar will be played stationary. Using a decibel meter, we will record the decibels at the user's position and compare it to the set value. We will test the lower bounds of the system next. Finally we can use a middle position to solidify the accuracy of our device
On/Off Button works properly	 Switching this button will accurately turn on and off an LED.

ELECTRICAL & COMPUTER ENGINEERING

Amplifier Implementation


- Guitar Signal must be amplified to allow for larger dB range (Av from 1 to 2).
- Low pass filters must also be added to adjust for any noise created by this subsystem/amplification.
- 3dB cutoff at 8 kHz

Analog Implementation

- Controlled though microcontroller based on input from microphones on guitar.
- Potentiometer has a max value around 10k Ohms with step resistance (Rs) of 39 Ohms.
- Digi-pot will control the amplitude of the output signal based on set reference voltage.
- BW = Rs(Dn) + Rw ; AW = Rs(256 Dn) + Rw

Digital Potentiometer

Digital Implementation

- Set control values depending on 12-bit ADC signal
- Utilize stream of envelope voltages to modify

Output

- Voltage Divider for analog amplification
- 128 control states

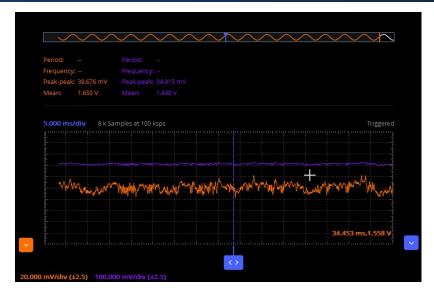
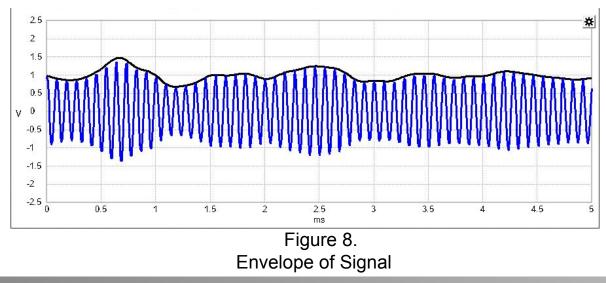



Figure 7. Orange: Microphone Signal Purple: Digital Potentiometer VDR

Microphone signal

- The microphone signal is sampled with an ADC (12-bit) on the Microcontroller.
- The signal envelope is calculated to detect changes in data.
- The magnitude of the Hilbert transform of the raw signal yields the envelope

ADC Sampling

- 12-bit signal
 - Sample Hold Time: 1.5 cycles
 - ADC Conversion Time: 12 cycles
- $f_{sample} = f_{ADC} / (SHT + ACT + 1)$
- f_sample = 14 MHz / (14.5 cycles) = 966 KHz

Filtering

- Bandpass for 80-1500 Hz range
- FIR for simplicity
- Centered at 790 Hz, bandwidth of 1420 Hz

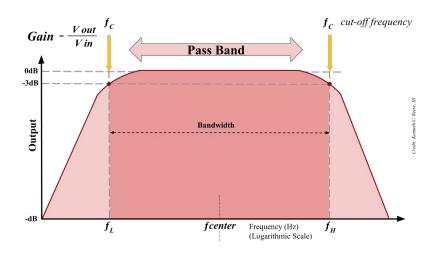
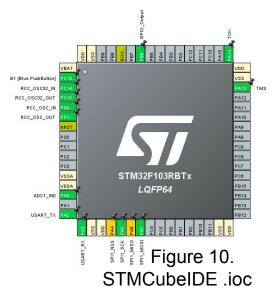



Figure 9. Band-pass Theory

Development to PCB

- STM32H723VET6 on PCB
- STM32F103RB on development board
- Pin assignments would be a simple translation

MCU	H7 series	F1 series
Core [MHz]	Up to 600	72
Flash Memory [Mbytes]	1	0.128
ADC frequency [MHz]	50	14
ADC resolution	16-bit	12-bit

Table 3. MCU Comparison

Success & Challenges

Looking Ahead

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN