


Vector Clock Size Lower Bound

Theorem: Any implementation of vector clocks using
vectors of real numbers requires vectors of length
n (number of processes).

Proof: For any value of n, consider this execution:
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a, : first send event at process p; b, : last receive event at p,



Example Bad Execution
N

For n = 4:
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Vector Clock Size Lower Bound

Claim 1: a., | | b; for all i (with wrap-around)

Proof: Since each proc. does all sends before any
receives, there is no transitivity. Also p,,; does not
send to p.

Claim 2: o, ; — b;for all j # i. Qi
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Proof: If | = i+ 1, obvious.
If j # i+1, then p,,; sends to p; ) b



Vector Clock Size Lower Bound

Suppose in contradiction, there is a way to implement
vector clocks with k-vectors of reals, where k < n.

By Claim 1, a.., || b

=> V(a, ;) and V(b)) are incomparable

=> V(a,,) is larger than V(b)) in some coordinate
h(i)

=>h:{0,...,n-1} - {0,...,k-1}



Vector Clock Size Lower Bound

Since k < n, the function h is not 1-1. So there exist
distinct i and J such that h(i) = h(J). Let r be this
common value of h.
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So V(a., ;) is larger than V(b)) in coordinate r and

V(ajy,) is larger than V(b)) in coordinate r also.

V(ajg)[r] > V(b)[r] by def. of r
= V(a;;)[r] by Claim 2 (q;,; — b)) & correct.
> V(b,)[r] by def. of r

Thus V(a,;) I< V(b), contradicting Claim 2 (a;; — b))
and assumed correctness of V.






