Prof. Jennifer Welch

1

2

Theorem: Any implementation of vector clocks using vectors of real numbers requires vectors of length *n* (number of processes).

Proof: For any value of *n*, consider this execution:

Example Bad Execution

For n = 4:

4

Claim 1: $a_{i+1} \mid b_i$ for all *i* (with wrap-around)

Proof: Since each proc. does all sends before any receives, there is no transitivity. Also p_{i+1} does not send to p_i .

Claim 2: $a_{i+1} \rightarrow b_j$ for all $j \neq i$. **Proof:** If j = i+1, obvious. If $j \neq i+1$, then p_{i+1} sends to p_j :

- 5
- Suppose in contradiction, there is a way to implement vector clocks with k-vectors of reals, where k < n.</p>
- **D** By Claim 1, $a_{i+1} \parallel b_i$
 - $= V(a_{i+1})$ and $V(b_i)$ are incomparable
 - => $V(a_{i+1})$ is larger than $V(b_i)$ in some coordinate h(i)
 - $=>h:\{0,\ldots,n-1\}\rightarrow\{0,\ldots,k-1\}$

- 6
- Since k < n, the function h is not 1-1. So there exist distinct i and j such that h(i) = h(j). Let r be this common value of h.</p>

□ So $V(a_{i+1})$ is larger than $V(b_i)$ in coordinate r and $V(a_{i+1})$ is larger than $V(b_i)$ in coordinate r also.

□
$$V(a_{j+1})[r] > V(b_j)[r]$$
 by def. of r
 $\geq V(a_{i+1})[r]$ by Claim 2 $(a_{i+1} \rightarrow b_j)$ & correct.
 $\geq V(b_i)[r]$ by def. of r

□ Thus $V(a_{j+1}) ! < V(b_i)$, contradicting Claim 2 $(a_{j+1} \rightarrow b_i)$ and assumed correctness of V.