Vector Clock Size Lower Bound

Theorem: Any implementation of vector clocks using vectors of real numbers requires vectors of length n (number of processes).
Proof: For any value of n, consider this execution:

a_{i} : first send event at process p_{i}
b_{i} : last receive event at p_{i}

Example Bad Execution

For $n=4$:

Vector Clock Size Lower Bound

Claim 1: $a_{i+1}| | b_{i}$ for all i (with wrap-around)
Proof: Since each proc. does all sends before any receives, there is no transitivity. Also p_{i+1} does not send to p_{i}.

Claim 2: $a_{i+1} \rightarrow b_{j}$ for all $j \neq i$.
Proof: If $j=i+1$, obvious.
If $j \neq i+1$, then p_{i+1} sends to p_{j} :

Vector Clock Size Lower Bound

\square Suppose in contradiction, there is a way to implement vector clocks with k-vectors of reals, where $k<n$.
\square By Claim 1, $a_{i+1}| | b_{i}$
$=>V\left(a_{i+1}\right)$ and $V\left(b_{i}\right)$ are incomparable
$=>V\left(a_{i+1}\right)$ is larger than $V\left(b_{i}\right)$ in some coordinate $h(i)$
$=>h:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, k-1\}$

Vector Clock Size Lower Bound

\square Since $k<n$, the function h is not 1-1. So there exist distinct i and j such that $h(i)=h(j)$. Let r be this common value of h.

$$
\begin{aligned}
& \begin{array}{l}
V\left(a_{0}\right) \\
V\left(a_{1}\right) \\
\text { in comp. } h(0) \\
V \\
\left(b_{0}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V\left(a_{n-1}\right) \geq \text { in comp. } h(n-2) V\left(b_{n-2}\right) \\
& >\text { in comp. } \mathrm{h}(n-1) \mathrm{V}\left(b_{n-1}\right)
\end{aligned}
$$

Vector Clock Size Lower Bound

Vector Clock Size Lower Bound

\square So $V\left(a_{i+1}\right)$ is larger than $V\left(b_{i}\right)$ in coordinate r and $V\left(a_{j+1}\right)$ is larger than $V\left(b_{j}\right)$ in coordinate r also.
$\square V\left(a_{j+1}\right)[r]>V\left(b_{j}\right)[r]$ by def. of r

$$
\begin{aligned}
& \geq V\left(a_{i+1}\right)[r] \text { by Claim } 2\left(a_{i+1} \rightarrow b_{j}\right) \& \text { correct. } \\
& \geq V\left(b_{i}\right)[r] \text { by def. of } r
\end{aligned}
$$

\square Thus $V\left(a_{j+1}\right)!<V\left(b_{i}\right)$, contradicting Claim $2\left(a_{j+1} \rightarrow b_{i}\right)$ and assumed correctness of V.

