Distributed Systems

CS 425/ ECE 428

Global States,
Distributed Snapshots

© 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

D

etecting Global Properties

a. Garbage wmllection

b. Deadlodk

c. Tem ination

P1 P2

object
reference

message
garbage object

P4 wait-for P2
P1 P2
activate
<— |

Algorithms to Find Global States |

« Why?
— (Distributed) garbage collection [think multiple processes sharing and
referencing objects]

— (Distributed) deadlock detection, termination [think database
transactions]

— Global states most useful for detecting stable predicates : once true
always stays true (unless you do something about it)

» e.g., once a deadlock, always stays a deadlock

* What?

— Global state=states of all processes + states of all communication
channels

— Capture the instantaneous state of each process

— And the instantaneous state of each communication channel, i.e.,
messages in transit on the channels

 How?
— We'll see this lecture!

Obvious First Solution... |

Synchronize clocks of all processes

Ask all processes to record their states at known
time t

Problems?

— Time synchronization possible only approximately (but
distributed banking applications cannot take approximations)

— Does not record the state of messages in the channels

Synchronization not required — causality is
enough!

Two Processes and Their Initial States |

$1000 (none) $50 2000

ac count widget s ac count widget s

Execution of the Processes

1. Global state § $1000. 0 -
< >
: 2
<
C

2. Global state §

3. Global state %

4. Global state %

>
(empty) <$50, 2000>
1 (empty)
>
<$900, o> c, (Order 10, $100) <$50, 2000>
<
C, (empty)
Send 5 freebie widgets!
>
<$900, 0> C, (Order 10, $100) <$50, 1995>
<
C, (five widgets)
>
<$900, 5> c, (Order 10, $100) <$50, 1995>
<

(empty)

Cuts|

i \\ f&?

®s’ Consistent ©3°
Inconsistent cut cut

\/

X = time frontier, one at each process
*f € cut Ciff fis to the left of the frontier C

Consistent Cuts|

R

s Consistent ©3°
Inconsistent cut cut Lamport’ s “happens-bgefore”

V, . c (if f— e then f & C)

*» A global state S is consistent if and only if it
corresponds to a consistent cut

A consistent cut == a global shapshot

The “Snapshot” Algorithm |

** Problem: Record a set of process and
channel states such that the combination is
a global snapshot/consistent cut.

. .
% .

» There is a uni-directional communication channel
between each ordered process pair (Pj 2 Pi and Pi - Pj)

» Communication channels are FIFO-ordered
» No failure, all messages arrive intact, exactly once

» Any process may initiate the snapshot (by sending a
special message called “Marker”)

» Snapshot does not require application to stop sending
messages, does not interfere with normal execution

» Each process is able to record its state and the state of its
incoming channels (no central collection)

The "Snapshot” Algorithm (2) |

1. Algorithm for for initiator process P,
< After P, has recorded its own state

« for each outgoing channel C, send a marker message
on C, and start recording messages on all incoming

channels
2. Marker receiving rule for a process P,
on receipt of a marker over channel C CORRECTIONS

_ MADE HERE
< if P, has not yet recorded its own state

- record P,’ s own state

- record the state of C as “empty”
- for each outgoing channel C, send a marker on C

- turn on recording of messages over other incoming
channels
- else

- record the state of C as all the messages received over C
since P, saved its own state; stop recording state of C

Chandy and Lamport’s ‘Snapshot’ Algorithm

Marker receiving rule for process p;
On p.’s receipt of a marker message over channel c:
if (p; has not yet recorded its state) it
records its process state now;
records the state of ¢ as the empty set;
turns on recording of messages arriving over other incoming channels;
else
p; records the state of ¢ as the set of messages it has received over ¢
since it saved its state.
end if
Marker sending rule for process p;
After p; has recorded its state, for each outgoing channel c:
p; sends one marker message over ¢
(before it sends any other message over c).

Snapshot Example |

P3

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

2- P2 receives Marker over C12, records its state (S2), sets state(C12) ={}
sends Marker to P1 & P3; turns on recording for channel C32

3- P1 receives Marker over C21, sets state(C21) = {a}

4- P3 receives Marker over C13, records its state (S3), sets state(C13) ={}
sends Marker to P1 & P2; turns on recording for channel C23

5- P2 receives Marker over C32, sets state(C32) = {b}
6- P3 receives Marker over C23, sets state(C23) ={}
7- P1 receives Marker over C31, sets state(C31) ={}

Provable Assertion: Chandy-Lamport algo.

determines a consistent cut

* Let e; and e, be events occurring at p; and p;, respectively
such that e 2 €

 The snapshot algorithm ensures that

if

if e; is in the cut then e is also in the cut.
, then it must be true that

By contradiction, suppose <p, records its state> = e,

Consider the path of app messages (through other
processes) that go from e; - e,

Due to FIFO ordering, markers on each link in above path
precede regular app messages

Thus, since <p, records its state> =2 ¢, it must be true
that p, received a marker before e,

Thus € is not in the cut => contradiction

