
Distributed Systems

CS 425 / ECE 428

Global States,
Distributed Snapshots

ã 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Detecting Global Properties
p2p1

message
garbage object

objec t
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

ac tivate
passive passivec. Term ination

Algorithms to Find Global States

• Why?
– (Distributed) garbage collection [think multiple processes sharing and

referencing objects]
– (Distributed) deadlock detection, termination [think database

transactions]
– Global states most useful for detecting stable predicates : once true

always stays true (unless you do something about it)
» e.g., once a deadlock, always stays a deadlock

• What?
– Global state=states of all processes + states of all communication

channels
– Capture the instantaneous state of each process
– And the instantaneous state of each communication channel, i.e.,

messages in transit on the channels

• How?
– We’ll see this lecture!

Obvious First Solution…

• Synchronize clocks of all processes
• Ask all processes to record their states at known

time t

• Problems?
– Time synchronization possible only approximately (but

distributed banking applications cannot take approximations)
– Does not record the state of messages in the channels

• Synchronization not required – causality is
enough!

Two Processes and Their Initial States

p1 p2c2

c1

account widget s

$1000 (none)

account widget s

$50 2000

Execution of the Processes

p1 p2
(empty)<$1000, 0> <$50, 2000>

(empty)

c2

c1

1. Global state S0

2. Global state S1

3. Global state S2

4. Global state S3

p1 p2
(Order 10, $100)<$900, 0> <$50, 2000>

(empty)

c2

c1

p1 p2
(Order 10, $100)<$900, 0> <$50, 1995>

(five widgets)

c2

c1

p1 p2
(Order 10, $100)<$900, 5> <$50, 1995>

(empty)

c2

c1

Send 5 freebie widgets!

Cuts

vCut = time frontier, one at each process
vf Î cut C iff f is to the left of the frontier C

P1

P2

P3

e1
0 e1

1 e1
2 e1

3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

Inconsistent cut
Consistent
cut

Consistent Cuts

vf Î cut C iff f is to the left of the frontier C
vA cut C is consistent if and only if

"e Î C (if f ® e then f Î C)
v A global state S is consistent if and only if it

corresponds to a consistent cut
vA consistent cut == a global snapshot

P1

P2

P3

e1
0 e1

1 e1
2 e1

3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

Inconsistent cut
Consistent
cut Lamport’s “happens-before”

The “Snapshot” Algorithm
v Problem: Record a set of process and

channel states such that the combination is
a global snapshot/consistent cut.

vSystem Model:
ØThere is a uni-directional communication channel

between each ordered process pair (Pj à Pi and Pi à Pj)
ØCommunication channels are FIFO-ordered
ØNo failure, all messages arrive intact, exactly once
ØAny process may initiate the snapshot (by sending a

special message called “Marker”)
ØSnapshot does not require application to stop sending

messages, does not interfere with normal execution
ØEach process is able to record its state and the state of its

incoming channels (no central collection)

The “Snapshot” Algorithm (2)
1. Algorithm for for initiator process P0

v After P0 has recorded its own state
• for each outgoing channel C, send a marker message

on C, and start recording messages on all incoming
channels

2. Marker receiving rule for a process Pk
on receipt of a marker over channel C

v if Pk has not yet recorded its own state
- record Pk’s own state
- record the state of C as “empty”
- for each outgoing channel C, send a marker on C
- turn on recording of messages over other incoming

channels
- else

- record the state of C as all the messages received over C
since Pk saved its own state; stop recording state of C

CORRECTIONS
MADE HERE

Chandy and Lamport’s ‘Snapshot’ Algorithm

Marker receiving rule for process pi
On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it
records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else
pi records the state of c as the set of messages it has received over c

since it saved its state.
end if

Marker sending rule for process pi
After pi has recorded its state, for each outgoing channel c:

pi sends one marker message over c
(before it sends any other message over c).

Snapshot Example

P1

P2

P3

e1
0

e2
0

e2
3

e3
0

e1
3

a

b

M

e1
1,2

M

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

e2
1,2,3

M

M

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

e1
4

3- P1 receives Marker over C21, sets state(C21) = {a}

e3
2,3,4

M

M

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

e2
4

5- P2 receives Marker over C32, sets state(C32) = {b}

e3
1

6- P3 receives Marker over C23, sets state(C23) = {}

e1
3

7- P1 receives Marker over C31, sets state(C31) = {}

Provable Assertion: Chandy-Lamport algo.
determines a consistent cut

• Let ei and ej be events occurring at pi and pj, respectively
such that ei à ej

• The snapshot algorithm ensures that
if ej is in the cut then ei is also in the cut.

• if ej à <pj records its state>, then it must be true that ei à <pi
records its state>.

• By contradiction, suppose <pi records its state> à ei

• Consider the path of app messages (through other
processes) that go from ei à ej

• Due to FIFO ordering, markers on each link in above path
precede regular app messages

• Thus, since <pi records its state> à ei , it must be true
that pj received a marker before ej

• Thus ej is not in the cut => contradiction

