
Shared	Memory
Consistency	Models

Nitin	Vaidya
UIUC







Algorithm	1



X1:= 2 X1:= 5

X2:= 5 X2:= 2

X3:= 5 X3:= 2

Write(X,2)

Write(X,5)

Write(X,5)							Ack()

Write(X,2)								Ack()

Read(X)									Ack(X,2)

Read(X)								Ack(X,2) Read(X)			Ack(X,5)

Read(X)				Ack(X,5)

Figure	1:	Algorithm	1



Algorithm	2



X1:= 2X1:= 5

X2:= 5 X2:= 2

X3:= 5 X3:= 2

Write(X,2)

Write(X,5)

Write(X,5)																																																																						Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Figure	2:	Algorithm	2

The	figure	shows	the	time	at	which	the
totally-ordered	multicast	messages	are	delivered



Algorithm	3



X1:= 2X1:= 5

X2:= 5 X2:= 2

X3:= 5 X3:= 2

Write(X,2)

Write(X,5)

Write(X,5)																																																																						Ack()

Write(X,2)																																																																																	Ack()

Read(X)				Ack(X,5)
Read(X)				Ack(X,2)

Read(X)		Ack(X,2)

Read(X)			Ack(X,2)

Figure	3:	Algorithm	3

The	figure	shows	the	time	at	which	the
totally-ordered	multicast	messages	are	delivered



Now	let	us	consider	just	the	operation	invocations	and	their	response.



X1:= 2 X1:= 5

X2:= 5 X2:= 2

X3:= 5 X3:= 2

Write(X,2)

Write(X,5)

Write(X,5)							Ack()

Write(X,2)								Ack()

Read(X)									Ack(X,2)

Read(X)								Ack(X,2) Read(X)			Ack(X,5)

Read(X)				Ack(X,5)

Figure	1:	Algorithm	1



Write(X,5)							Ack()

Write(X,2)								Ack()

Read(X)									Ack(X,2)

Read(X)								Ack(X,2) Read(X)			Ack(X,5)

Read(X)				Ack(X,5)

Figure	4:	Redrawn	Figure	1



X1:= 2X1:= 5

X2:= 5 X2:= 2

X3:= 5 X3:= 2

Write(X,2)

Write(X,5)

Write(X,5)																																																																						Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Figure	2:	Algorithm	2

The	figure	shows	the	time	at	which	the
totally-ordered	multicast	messages	are	delivered



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Figure	5:	Redrawn	Figure	2



X1:= 2X1:= 5

X2:= 5 X2:= 2

X3:= 5 X3:= 2

Write(X,2)

Write(X,5)

Write(X,5)																																																																						Ack()

Write(X,2)																																																																																	Ack()

Read(X)				Ack(X,5)
Read(X)				Ack(X,2)

Read(X)		Ack(X,2)

Read(X)			Ack(X,2)

Figure	3:	Algorithm	3

The	figure	shows	the	time	at	which	the
totally-ordered	multicast	messages	are	delivered



Write(X,5)																																																																						Ack()

Write(X,2)																																																																																Ack()

Read(X)				Ack(X,5)
Read(X)				Ack(X,2)

Read(X)		Ack(X,2)

Read(X)			Ack(X,2)

Figure	6:	Redrawn	Figure	3



Permutations



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

1.3. CONSISTENCY MODELS

were received). We also showed the messages that were sent to implement the shared memory

operations. These messages are implementation-dependent. For the purpose of defining consistency,

the details of the implementations are not of interest. Only the sequence of operations performed,

timing of invocation and response of each operations, and the returned values (for Reads) are taken

into account when determining whether an execution satsfies a certain consistency model. With

this in mind, Figures 4, 5 and 6 redraw the executions in Figures 1, 2 and 3, respectively. The

redrawn figures show the invocations and responses for all the operations, but omit the internal

details of the DSM implementation.

A large number of consistency models have been proposed so far. We will define four consistency

models in this chapter:

• Linearizability (also called Atomic Consistency)

• Sequential consistency

• Causal consistency

• Eventual consistency

Before we can define these consistency models, we need to introduce some terminology.

A permutation of the operations in a given execution consists of a single sequence in which all

the operations performed by all the processes are included, and the operations performed at any

single process appear in the same order as in the given execution. For instance, let us consider the

following permutation of the operations in Figure 5. To help identify the process that performed

each operation, the process index is included as a subscript below. Also, the value returned by a

read operation is included as the second parameter of the Read. Thus, Read(X) at process p1 that

returned value 5 is written as Read1(X, 5) below.

Write1(X, 2), Write3(X, 5), Read1(X, 2), Read2(X, 5), Read2(X, 2), Read1(X, 2)

In the execution in Figure 5, some of the operations overlap in time (for instance, Write1(X, 2)

and Write3(X, 5)), and yet in the above permutation we specify them in a single totally-ordered

sequence.

Observe that the operations performed by p1 appear in the above permutation in the same

order as the order of operations at p1 in the execution in Figure 5. In fact, this is true for all

the processes. Hereafter we will only consider permutations that have this per-process order-

preserving property.

Now let us consider whether the above permutation “makes sense”. Specifically, if the operations

were indeed to be performed – one at a time – in the order specified in the above permutation, could

c� 2016 Vaidya 10c� 2016 Vaidya 10c� 2016 Vaidya 10

Figure	5:



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Permutation	per-process	order	preserving

1.3. CONSISTENCY MODELS

were received). We also showed the messages that were sent to implement the shared memory

operations. These messages are implementation-dependent. For the purpose of defining consistency,

the details of the implementations are not of interest. Only the sequence of operations performed,

timing of invocation and response of each operations, and the returned values (for Reads) are taken

into account when determining whether an execution satsfies a certain consistency model. With

this in mind, Figures 4, 5 and 6 redraw the executions in Figures 1, 2 and 3, respectively. The

redrawn figures show the invocations and responses for all the operations, but omit the internal

details of the DSM implementation.

A large number of consistency models have been proposed so far. We will define four consistency

models in this chapter:

• Linearizability (also called Atomic Consistency)

• Sequential consistency

• Causal consistency

• Eventual consistency

Before we can define these consistency models, we need to introduce some terminology.

A permutation of the operations in a given execution consists of a single sequence in which all

the operations performed by all the processes are included, and the operations performed at any

single process appear in the same order as in the given execution. For instance, let us consider the

following permutation of the operations in Figure 5. To help identify the process that performed

each operation, the process index is included as a subscript below. Also, the value returned by a

read operation is included as the second parameter of the Read. Thus, Read(X) at process p1 that

returned value 5 is written as Read1(X, 5) below.

Write1(X, 2), Write3(X, 5), Read1(X, 2), Read2(X, 5), Read2(X, 2), Read1(X, 2)

In the execution in Figure 5, some of the operations overlap in time (for instance, Write1(X, 2)

and Write3(X, 5)), and yet in the above permutation we specify them in a single totally-ordered

sequence.

Observe that the operations performed by p1 appear in the above permutation in the same

order as the order of operations at p1 in the execution in Figure 5. In fact, this is true for all

the processes. Hereafter we will only consider permutations that have this per-process order-

preserving property.

Now let us consider whether the above permutation “makes sense”. Specifically, if the operations

were indeed to be performed – one at a time – in the order specified in the above permutation, could

c� 2016 Vaidya 10c� 2016 Vaidya 10c� 2016 Vaidya 10

Figure	5:



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Permutation	NOT	valid

1.3. CONSISTENCY MODELS

were received). We also showed the messages that were sent to implement the shared memory

operations. These messages are implementation-dependent. For the purpose of defining consistency,

the details of the implementations are not of interest. Only the sequence of operations performed,

timing of invocation and response of each operations, and the returned values (for Reads) are taken

into account when determining whether an execution satsfies a certain consistency model. With

this in mind, Figures 4, 5 and 6 redraw the executions in Figures 1, 2 and 3, respectively. The

redrawn figures show the invocations and responses for all the operations, but omit the internal

details of the DSM implementation.

A large number of consistency models have been proposed so far. We will define four consistency

models in this chapter:

• Linearizability (also called Atomic Consistency)

• Sequential consistency

• Causal consistency

• Eventual consistency

Before we can define these consistency models, we need to introduce some terminology.

A permutation of the operations in a given execution consists of a single sequence in which all

the operations performed by all the processes are included, and the operations performed at any

single process appear in the same order as in the given execution. For instance, let us consider the

following permutation of the operations in Figure 5. To help identify the process that performed

each operation, the process index is included as a subscript below. Also, the value returned by a

read operation is included as the second parameter of the Read. Thus, Read(X) at process p1 that

returned value 5 is written as Read1(X, 5) below.

Write1(X, 2), Write3(X, 5), Read1(X, 2), Read2(X, 5), Read2(X, 2), Read1(X, 2)

In the execution in Figure 5, some of the operations overlap in time (for instance, Write1(X, 2)

and Write3(X, 5)), and yet in the above permutation we specify them in a single totally-ordered

sequence.

Observe that the operations performed by p1 appear in the above permutation in the same

order as the order of operations at p1 in the execution in Figure 5. In fact, this is true for all

the processes. Hereafter we will only consider permutations that have this per-process order-

preserving property.

Now let us consider whether the above permutation “makes sense”. Specifically, if the operations

were indeed to be performed – one at a time – in the order specified in the above permutation, could

c� 2016 Vaidya 10c� 2016 Vaidya 10c� 2016 Vaidya 10

Figure	5:



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Permutation	valid	(and	per-process	order-preserving)

Figure	5:
1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Such	permutations	not	necessarily	unique

Figure	5:
1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11

1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11



Write(X,5)							Ack()

Write(X,2)								Ack()

Read(X)									Ack(X,2)

Read(X)								Ack(X,2) Read(X)			Ack(X,5)

Read(X)				Ack(X,5)

Figure	4

Is	there	a	valid	and	per-process	order-preserving	permutation?



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Permutation	valid	(and	per-process	order-preserving)

Figure	5:
1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11

1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11

But	not	real-time	order-preserving



Write(X,5)																																																																						Ack()

Write(X,2)																																																																																Ack()

Read(X)				Ack(X,5)
Read(X)				Ack(X,2)

Read(X)		Ack(X,2)

Read(X)			Ack(X,2)

Figure	6

1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11

Valid,	per-process	order	preserving,	real-time	order-preserving



Consistency	Model



Linearizability

An	execution	is	linearizable if	there	exists	a	
permutation	that	is

valid,
per-process	order-preserving,	and
real-time	order-preserving



Linearizability

Intuitively	…

Each	operation	in	a	linearizable execution	
appears	to	“take	effect”	instantaneously	at	some	
time	between	its	invocation	and	its	response

This	point	of	time	is	called	its	linearization	point



Linearization	Points

If	we	can	find	linearization	points	such	that	the	
permutation	of	the	operations	as	per	the	real-
time	order	of	the	linearization	points	is	valid

then	the	execution	is	linearizable



Write(X,5)																																																																						Ack()

Write(X,2)																																																																																Ack()

Read(X)				Ack(X,5) Read(X)				Ack(X,2)

Read(X)		Ack(X,2) Read(X)			Ack(X,2)

Figure	6		…	can	we	find	suitable
linearization	points	?



Write(X,5)																																																																						Ack()

Write(X,2)																																																																																Ack()

Read(X)				Ack(X,5) Read(X)				Ack(X,2)

Read(X)		Ack(X,2) Read(X)			Ack(X,2)

Figure	7:	Execution	of	Figure	6	with
linearization	points	marked	by
triangles

1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11



Write(X,5)																																																																						Ack()

Write(X,2)																																																																																Ack()

Read(X)				Ack(X,5) Read(X)				Ack(X,2)

Read(X)		Ack(X,2) Read(X)			Ack(X,2)

Figure	8:	Alternate	linearization	points
(compare	with	Figure	7)



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Figure	5		…	can	we	find	suitable
linearization	points	?



Linearizability

Intuitively	…

Each	operation	in	a	linearizable execution	
appears	to	“take	effect”	instantaneously	at	some	
time	between	its	invocation	and	its	response

This	point	of	time	is	called	its	linearization	point
…	this	preserves	per-process	
and	real-time	order	both



Sequential	Consistency

An	execution	is	sequentially	consistent	if	there	
exists	a	permutation	that	is

valid,	and
per-process	order-preserving



Sequential	Consistency

An	execution	is	sequentially	consistent	if	there	
exists	a	permutation	that	is

valid,	and
per-process	order-preserving

An	execution	that	is	linearizable is	also	
sequentially	consistent



Write(X,5)																																																																					Ack()

Write(X,2)																																																														Ack()

Read(X)				Ack(X,5) Read(X)			Ack(X,2)

Read(X)		Ack(X,2)

Read(X)		Ack(X,2)

Figure	5		…	not	linearizable,
but	satisfies	sequential	consistency

1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11



Sequential	Consistency



Sequential	Consistency



Example 1

40

write(X,1) ack(X)

Suppose there are two shared variables, X and Y, both initially 0

read(Y) ack(Y,1)

write(Y,1) ack(Y) read(X) ack(X,1)

p0

p1

linearizability?
sequential consistency?

Example	from	Prof.	Welch’s	slides



Example 2

41

write(X,1) ack(X)

Suppose there are two shared variables, X and Y, both initially 0

read(Y) ack(Y,1)

write(Y,1) ack(Y) read(X) ack(X,0)

p0

p1

linearizability?
sequential consistency?

Example	from	Prof.	Welch’s	slides



Example 3

42

write(X,1) ack(X)

Suppose there are two shared variables, X and Y, both initially 0

read(Y) ack(Y,0)

write(Y,1) ack(Y) read(X) ack(X,0)

p0

p1

linearizability?
sequential consistency?

Example	from	Prof.	Welch’s	slides



Implementation

• Algorithm	2	achieves sequential	consistency
– That	is,	all	executions	that	result	when	using	
algorithm	2	satisfy	sequential	consistency

• Algorithm	3	achieves	linearizability



Happened-Before	for	Shared	Memory



Program	Order

• Operations	O1 and	O2 at	the	same	process	p

O1 <	O2 :	if	O1 completes	at	p sometime	before	
O2 is	invoked



Reads-From
• Write	operation	W
• Read	operation	R
• May	be	at	same	or	different	processes

R	reads	from	W								W	-->	R

if	R	returns	value	written	by	W

(some	ambiguity	if	same	value	written	by	multiple	
writes	…	assume	unique	values	written)



Happened-Before

• (Program	order)	If	O1 <	O2 then	O1 à O2

• (Reads-from)	If	O1 -->	O2 then	O1 à O2

• (Transitivity)	If	O1 à O2 and	O2 à O3 the	O1 à O3



Write(X,5)							Ack()

Write(X,2)								Ack()

Read(X)									Ack(X,2)

Read(X)								Ack(X,2) Read(X)			Ack(X,5)

Read(X)				Ack(X,5)

Figure	4

Write1(X,2)	à Read1(X,2)	?

Write1(X,2)	à Read1(X,5)	?



Write(X,5)							Ack()

Write(X,2)								Ack()

Read(X)									Ack(X,2)

Read(X)								Ack(X,2) Read(X)			Ack(X,5)

Read(X)				Ack(X,5)

Figure	4

Write1(X,2)	à Read2(X,2)	?

Write3(X,5)	à Read2(X,5)	?

Read2(X,2)	àWrite1(X,2)	?



Write(X,5)							Ack()

Write(X,2)								Ack()

Read(X)									Ack(X,2)

Read(X)								Ack(X,2) Read(X)			Ack(X,5)

Read(X)				Ack(X,5)

Figure	4

Write3(X,5)	à Read1(X,2)	?

Read2(X,2)	à Read1(X,5)	?

Write3(X,5)	à Read2(X,2)	?


