Shared Memory
Consistency Models

Algorithm 1

Write(X,2) Ack() Read(X) Ack(X,2) Read(X) Ack(X,5)

X,:=2 Read(X) Ack(X,2)
O | J—

Write(X,5) Ack()

Figure 1: Algorithm 1

Algorithm 2

Write(X,2) A Ack() Read(X) Ack(X,2)

Q O
X=5X;=2 Read(X) Ack(X,2)
rires

Read Ack(X,5) Read(X) Ack(X,2)
O O ®

Write(X,5) Ack()
Figure 2: Algorithm 2

The figure shows the time at which the
totally-ordered multicast messages are delivered

Algorithm 3

‘ Xi=2 Read® \V’
A \
Ck(X,S)

Write(X,5) Ack()

Figure 3: Algorithm 3

The figure shows the time at which the
totally-ordered multicast messages are delivered

Now let us consider just the operation invocations and their response.

Write(X,2) Ack() Read(X) Ack(X,2) Read(X) Ack(X,5)

X,:=2 Read(X) Ack(X,2)
O | J—

Write(X,5) Ack()

Figure 1: Algorithm 1

Write(X,2) Ack() Read(X) Ack(X,2) Read(X) Ack(X,5)
O e O e O O

Read(X) Ack(X,2)
OO O | J—

Read(X) Ack(X,5)

O e ——)
Write(X,5) Ack()

Figure 4: Redrawn Figure 1

Write(X,2) A Ack() Read(X) Ack(X,2)

Q O
X=5X;=2 Read(X) Ack(X,2)
rires

Read Ack(X,5) Read(X) Ack(X,2)
O O ®

Write(X,5) Ack()
Figure 2: Algorithm 2

The figure shows the time at which the
totally-ordered multicast messages are delivered

Write(X,2) Ack() Read(X) Ack(X,2)
(—)(_C OO
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

e EEEEE———
Write(X,5) Ack()

Figure 5: Redrawn Figure 2

‘ Xi=2 Read® \V’
A \
Ck(X,S)

Write(X,5) Ack()

Figure 3: Algorithm 3

The figure shows the time at which the
totally-ordered multicast messages are delivered

Write(X,2) Ack() Read(X) Ack(X,2
_(—)__)_C—_O_
Read(X) Ack(X,2)

Read(X) Ack(X,5)
O) O m—

Read(X) Ack(X,2

e)
Write(X,5) Ack()

Figure 6: Redrawn Figure 3

Permutations

Figure 5:

Write(X,2) Ack() Read(X) Ack(X,2)
(—)(_C OO
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

e EEEEE———
Write(X,5) Ack()

Write1(X,2), Writes(X,5), Read;(X,2), Read2(X,5), Reads(X,2), Readi(X,2)

Figure 5:

Write(X,2) Ack() Read(X) Ack(X,2)
()__C O O—
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

B T e
Write(X,5) Ack()

Write1(X,2), Writes(X,5), Read;(X,2), Read2(X,5), Reads(X,2), Readi(X,2)

Figure 5:

Write(X,2) Ack() Read(X) Ack(X,2)
_(—)__C OO
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

e (),
Write(X,5) Ack()

Write1(X,2), Writes(X,5), Read;(X,2), Read2(X,5), Reads(X,2), Readi(X,2)

Figure 5:

Write(X,2) Ack() Read(X) Ack(X,2)
()__C O O
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

e))
Write(X,5) Ack()

Writes(X,5), Reads(X,5), Write1(X,2), Reads(X,2), Readi(X,2), Readi(X,?2)

Figure 5:

Write(X,2) Ack() Read(X) Ack(X,2)
_(—)__C . o -
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

B T e
Write(X,5) Ack()

Writes(X,5), Reads(X,5), Write1(X,2), Reads(X,2), Readi(X,2), Readi(X,?2)

Writes(X,5), Reads(X,5), Write1(X,2), Read1(X,2), Reads(X,2), Readi(X,?2)

Figure 4

Write(X,2) Ack() Read(X) Ack(X,2) Read(X) Ack(X,5)
O e O e O O

Read(X) Ack(X,2)
OO O | J—

Read(X) Ack(X,5)

O e ——)
Write(X,5) Ack()

Is there a valid and per-process order-preserving permutation?

Figure 5:

Write(X,2) Ack() Read(X) Ack(X,2)
M—_@ H_
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

Writes(X,5), Reada(X,5), Write1(X,2), Ready(X,2), Reads(X,2), Read;(X,2)
e)
Write(X,5) Ack()

Writes(X,5), Reads(X,5), Write1(X,2), Reads(X,2), Readi(X,2), Readi(X,2)

Figure 6

Write(X,2) Ack() Read(X) Ack(X,2
_(—)__)___O_
Read(X) Ack(X,2)

Read(X) Ack(X,5)
OO O e

Read(X) Ack(X,2

e O——————————)
Write(X,5) Ack()

Writes(X,5), Reads(X,5), Write1(X,2), Read;(X,2), Ready(X,2), Read;(X,?2)

Consistency Model

Linearizability

An execution is linearizable if there exists a
permutation that is

valid,
per-process order-preserving, and
real-time order-preserving

Linearizability

Intuitively ...

Each operation in a linearizable execution
appears to “take effect” instantaneously at some
time between its invocation and its response

This point of time is called its linearization point

Linearization Points

If we can find linearization points such that the
permutation of the operations as per the real-
time order of the linearization points is valid

then the execution is linearizable

Write(X,2) Ack()Read(X) Ack(X,2) Read(X) Ack(X,2
B el e e

Read(X) Ack(X,5) Read(X) Ack(X,2)
O) O m—

e)
Write(X,5) Ack()

Figure 6 ... can we find suitable
linearization points ?

Writes(X,5), Reads(X,5), Write1(X,2), Ready(X,2), Reads(X,2), Read;(X,2)

Write(X,2) Ack()Read(X) Ack(X,2) Read(X) Ack(X,2

Read(X) Ack(X,5) Read(X) Ack(X,2)

OrO—

Write(X,5) Z Ack()

Figure 7: Execution of Figure 6 with
linearization points marked by
triangles

Write(X,2) Ack()Read(X) Ack(X,2) Read(X) Ack(X,2

Read(X) Ack(X,5) Read(X) Ack(X,2)
AN
Write(X,5) Z Ack()

Figure 8: Alternate linearization points
(compare with Figure 7)

Write(X,2) Ack() Read(X) Ack(X,2)
(—)(_C OO
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

e e —_)
Write(X,5) Ack()

Figure 5 ... can we find suitable
linearization points ?

Linearizability

Intuitively ...

Each operation in a linearizable execution
appears to “take effect” instantaneously at some
time between its invocation and its response

... this preserves per-process
and real-time order both

This point of ti Zarization point

Sequential Consistency

An execution is sequentially consistent if there
exists a permutation that is

valid, and
per-process order-preserving

Sequential Consistency

An execution is sequentially consistent if there
exists a permutation that is

valid, and
per-process order-preserving

An execution that is linearizable is also
sequentially consistent

Write(X,2) Ack() Read(X) Ack(X,2)
O e O e @ e @ OO
Read(X) Ack(X,2)

Read(X) Ack(X,5) Read(X) Ack!X,Z)

e EEEEE———
Write(X,5) Ack()

Writes(X,5), Reads(X,5), Write1(X,2), Reads(X,2), Readi(X,2), Readi(X,2)

Figure 5 ... not linearizable,
but satisfies sequential consistency

Sequential Consistency

Sequential Consistency

Example 1

Suppose there are two shared variables, X and Y, both initially O

write(X,1) ack(X) read(Y) ack(Y,1)
Po

write(Y,1) ack(yY) read(X) ack(X,1)
P4

linearizability?
sequential consistency?

Example from Prof. Welch’s slides

Example 2

Suppose there are two shared variables, X and Y, both initially O

write(X,1) ack(X) read(Y) ack(Y,1)
Po

write(Y,1) ack(yY) read(X) ack(X,0)
P4

linearizability?
sequential consistency?

Example from Prof. Welch’s slides

Example 3

Suppose there are two shared variables, X and Y, both initially O

write(X,1) ack(X) read(Y) ack(Y,0)
Po

write(Y,1) ack(yY) read(X) ack(X,0)
P4

linearizability?
sequential consistency?

Example from Prof. Welch’s slides

Implementation

e Algorithm 2 achieves sequential consistency

— That is, all executions that result when using
algorithm 2 satisfy sequential consistency

* Algorithm 3 achieves linearizability

Happened-Before for Shared Memory

Program Order

* Operations O, and O, at the same process p

0, <0, :if O, completes at p sometime before
O, is invoked

Reads-From

* Write operation W
* Read operation R
* May be at same or different processes

R reads from W W -->R
if R returns value written by W

(some ambiguity if same value written by multiple
writes ... assume unique values written)

Happened-Before

* (Program order) If 0, < O, then O, 2 O,
* (Reads-from) If O, --> O, then O, = O,
* (Transitivity) If O, = O, and O, = O;the O, = O,

Figure 4

Write(X,2) Ack() Read(X) Ack(X,2) Read(X) Ack(X,5)
—O—Oeeee O— OO

Read(X)

OO
Read(X) Ack(X,5)

—O ()

Ack(X,2)

Write(X,5) Ack ,
nrettSl AKD T Write, (X,2) > Read, (X,2) ?

Write,(X,2) = Read,(X,5) ?

Figure 4

Write(X,2) Ack() Read(X) Ack(X,2) Read(X) Ack(X,5)
—O—Oeeee O— OO

Read(X)

OO
Read(X) Ack(X,5)

—O ()

Ack(X,2)

Write(X,5) Ack()

Read,(X,2) > Write,(X,2) ?
Write,(X,2) = Read,(X,2) ?
Write,(X,5) = Read,(X,5) ?

Figure 4

Write(X,2) Ack() Read(X) Ack(X,2) Read(X) Ack(X,5)
—O—Oeeee O— OO

Read(X)

OO
Read(X) Ack(X,5)

—O ()

Ack(X,2)

Write(X,5) Ack ,
el AKD T \Write,(X,5) > Read, (X,2) ?

Read,(X,2) = Read,(X,5) ?
Write,(X,5) = Read,(X,2) ?

