Shared Memory Consistency Models

Nitin Vaidya UIUC

Algorithm 1

Figure 1: Algorithm 1

Algorithm 2

Figure 2: Algorithm 2

The figure shows the time at which the totally-ordered multicast messages are *delivered*

Algorithm 3

Figure 3: Algorithm 3

The figure shows the time at which the totally-ordered multicast messages are *delivered*

Now let us consider just the operation invocations and their response.

Figure 1: Algorithm 1

Figure 4: Redrawn Figure 1

Figure 2: Algorithm 2

The figure shows the time at which the totally-ordered multicast messages are *delivered*

Figure 5: Redrawn Figure 2

Figure 3: Algorithm 3

The figure shows the time at which the totally-ordered multicast messages are *delivered*

Figure 6: Redrawn Figure 3

Permutations

Figure 5:

 $Write_{1}(X,2),\ Write_{3}(X,5),\ Read_{1}(X,2),\ Read_{2}(X,5),\ Read_{2}(X,2),\ Read_{1}(X,2)$

 $Write_1(X, 2), \ Write_3(X, 5), \ Read_1(X, 2), \ Read_2(X, 5), \ Read_2(X, 2), \ Read_1(X, 2)$

Permutation per-process order preserving

 $Write_1(X, 2), \ Write_3(X, 5), \ Read_1(X, 2), \ Read_2(X, 5), \ Read_2(X, 2), \ Read_1(X, 2)$

Permutation NOT valid

 $Write_{3}(X,5), \ Read_{2}(X,5), \ Write_{1}(X,2), \ Read_{2}(X,2), \ Read_{1}(X,2), \ Read_{1}(X,2)$

Permutation valid (and per-process order-preserving)

 $Write_3(X,5), Read_2(X,5), Write_1(X,2), Read_1(X,2), Read_2(X,2), Read_1(X,2)$

Such permutations not necessarily unique

Figure 4

 $Write_{3}(X,5), \ Read_{2}(X,5), \ Write_{1}(X,2), \ Read_{2}(X,2), \ Read_{1}(X,2), \ Read_{1}(X,2)$

Permutation valid (and per-process order-preserving)

But not real-time order-preserving

Figure 6

 $Write_3(X,5), Read_2(X,5), Write_1(X,2), Read_1(X,2), Read_2(X,2), Read_1(X,2)$

Valid, per-process order preserving, real-time order-preserving

Consistency Model

Linearizability

An execution is linearizable if there exists a permutation that is

valid,

per-process order-preserving, and real-time order-preserving

Linearizability

Intuitively ...

Each operation in a linearizable execution appears to "take effect" instantaneously at some time between its invocation and its response

This point of time is called its *linearization point*

Linearization Points

If we can find linearization points such that the permutation of the operations as per the real-time order of the linearization points is valid

then the execution is linearizable

Figure 6 ... can we find suitable linearization points?

Figure 7: Execution of Figure 6 with linearization points marked by triangles

Figure 8: Alternate linearization points (compare with Figure 7)

Figure 5 ... can we find suitable linearization points?

Linearizability

Intuitively ...

Each operation in a linearizable execution appears to "take effect" instantaneously at some time between its invocation and its response

... this preserves per-process and real-time order both

This point of time is carred its imearization point

Sequential Consistency

An execution is sequentially consistent if there exists a permutation that is

valid, and

per-process order-preserving

Sequential Consistency

An execution is sequentially consistent if there exists a permutation that is

valid, and

per-process order-preserving

An execution that is linearizable is also sequentially consistent

 $Write_3(X,5), Read_2(X,5), Write_1(X,2), Read_2(X,2), Read_1(X,2), Read_1(X,2)$

Figure 5 ... not linearizable, but satisfies sequential consistency

Sequential Consistency

Sequential Consistency

Example 1

Suppose there are two shared variables, X and Y, both initially 0

Example from Prof. Welch's slides

Example 2

Suppose there are two shared variables, X and Y, both initially 0

Example 3

Suppose there are two shared variables, X and Y, both initially 0

Implementation

- Algorithm 2 achieves sequential consistency
 - That is, all executions that result when using algorithm 2 satisfy sequential consistency

Algorithm 3 achieves linearizability

Happened-Before for Shared Memory

Program Order

Operations O₁ and O₂ at the same process p

 $O_1 < O_2$: if O_1 completes at p sometime before O_2 is invoked

Reads-From

- Write operation W
- Read operation R
- May be at same or different processes

R reads from W --> R

if R returns value written by W

(some ambiguity if same value written by multiple writes ... assume unique values written)

Happened-Before

- (Program order) If $O_1 < O_2$ then $O_1 \rightarrow O_2$
- (Reads-from) If $O_1 \longrightarrow O_2$ then $O_1 \rightarrow O_2$
- (Transitivity) If $O_1 \rightarrow O_2$ and $O_2 \rightarrow O_3$ the $O_1 \rightarrow O_3$

Figure 4

Figure 4

Figure 4

