
Effectiveness of Delaying Timestamp Computation

Sandeep Kulkarni Nitin Vaidya
Michigan State University University of Illinois

System Model

g Asynchronous system

g n processes

g Pairwise message-passing channels

g Unicasts

g Incomplete network

2

Goal

Assign timestamp Te to each event e

such that
Te < Tf iff e à f

3

Much Related Work
g Message-passing

iVector timestamps [Fidge-Mattern 1988]
iVector lower bound [Charron-Bost 1991]
iLower bound [Melideo 2001]
iSynchronous messages [Garg 2002]
iCausal separators [Rodriguez 1995]
iExploiting locality [Meldal 1999]
iPlausible clocks [Torres-Rojas 1999]
iCluster timestamps [Ward 2001]
i…

g Shared memory
iLazy replication [Ladin 1992]
iSwiftCloud [Zawirski 2015]
iVersion vectors, dotted version vectors [Almeida 2014]
i…

Outline

g Vector timestamp bounds

g Alternate solution

5

Vector Timestamps
[Fidge-Mattern 1988]

g Timestamp Te is a vector

g Vector comparison: Te < Tf if

iTe[i] Tf[i] for all i

iThere exists i such that Te[i] < Tf[i]

6

Since the timestamp elements are constrained to be non-negative
integers, one of the elements of the timestamp of the last of these
computation events at p0, namely e

0
P , must be > M . Recall that

P = (M + 2)n.
Consider setW that contains event e0P and ei1, 0 < i < n. �us,

W contains n events, with one event at each of the n processes.
Create a set S of processes as follows: for each l , 0  l < s , add to S
any one process pj such that the l-th element of the timestamp of its
event inW is the largest among the l-th elements of the timestamps
of all the events inW . Clearly, p0 2 S and |S |  s  n � 1. Consider
a radial process pk < S (note that pk , p0). Such a process pk must
exist since |S |  n � 1, p0 2 S , and there are n � 1 radial processes.

Suppose that the message sent by process pk at event ek1 reaches
process p0 a�er all the other messages, including messages from
the radial processes in S , reach process p0. Let e = e

0
P+n�2. By

event e at p0, except for the message sent by process pk , all the
other messages, including messages sent by all the radial processes
in S , are received by process p0.

Rest of the proof of this lemma is similar to the proof of Lemma
2.1. In particular, de�ne vector E such that E[l] =
max0i<n timestampe i1

[l], 0  l < s . By de�nition ofW , we also
have that E[l] = maxpi 2W timestampe i1

[l], 0  l < s .
�e above assumption about the order of message delivery im-

plies that

E  timestampe0P+n�2
.

Also, since pk <W , we have that timestampek1
 E. �is implies

that timestampek1
 timestampe0P+n�2

.

Since ek1 , e
0
P+n�2, their timestamps must be distinct too. �is

implies that timestampek1
< timestampe0P+n�2

, which, in turn, im-

plies that ek1 ! e
0
P+n�2. However, e

k
1 and e0P+n�2 are concurrent

events, leading to a contradiction.
⇤

L���� 2.3. Suppose that the communication G graph has vertex
connectivity � 2. For this graph, an online algorithm assigns distinct
vector timestamps to distinct events such that, for any two events e
and f , e ! f if and only if timestampe < timestampf . �en the
vector length must be � n.

P����. Recall that G is the communication graph formed by
the n processes.

�is proof is analogous to the proof of Lemma 2.1. �e proof is
trivial for n  2.

Now assume that n � 3. �e proof is by contradiction. Suppose
that the vector length is s  n � 1.

Consider an execution inwhich, initially, each processpi , 0  i <
n, sends a message to each of its neighbors in the communication
graph. Subsequently, whenever a message is received from any
neighbor, a process forwards the message to all its other neighbors.
�us, essentially, the messages are being �ooded throughout the
network (the execution is in�nite, although we will only focus on
a �nite subset of the events).

Create a set S of processes as follows: for each l , 0  l < s , add
to S any one process pj such that timestampe j1

[l] =

max0i<n timestampe i1
[l]. Clearly, |S |  s  n � 1. Consider a

process pk < S . Such a process pk must exist since |S |  n � 1.
Suppose that all the communication channels between pk and its

neighbors are very slow, but each of the remaining communication
channels has a delay upper bounded by some constant � > 0. For
convenience of discussion, let us ignore local computation delay
between the receipt of a message at a process and its forwarding to
the neighbors. LetD be de�ned as the maximum over the diameters
of all the subgraphs of G containing n � 1 vertices. Let the delay on
all communication channels of pk be > 2�D. Because the network’s
vertex connectivity is � 2, within duration �D, n � 1 processes,
except pk , will have received messages initiated by those n � 1
processes (i.e., all messages except the message initiated by pk).

De�ne vector E such that E[l] = max0i<n timestampe i1
[l], 0 

l < s . By de�nition of S , we also have that E[l] =
maxpi 2S timestampe i1

[l], 0  l < s .
Consider any process pi , pk . Let e be the earliest receive event

at pi such that by event e (i.e., including event e), pi has received the
messages initiated by all processes except pk . Due to the de�nition
of D and � , event e occurs at pi by time �D. Since by event e , pi
has received the messages initiated by all other processes except
pk , and pk < S , we have

E  timestampe .

Also, since pk < S , we have

timestampek1
 E.

�e above two inequalities together imply that timestampek1


timestampe .
Since ek1 and e occur on di�erent processes, ek1 , e , and their

timestamps must be distinct too. �us, timestampek1
< timestampe ,

which, in turn, implies that ek1 ! e . However, ek1 and e are con-
current events, because e

k
1 is the �rst event at pk , there are no

messages received by pk before 2�D, and similarly, no process re-
ceives messages from pk during 2�D. �is results in a contradiction.

⇤

For any graph, upper bound ofn is obtained by using the standard
vector clock algorithm for n processes [8, 15]. �us, the bound n is
tight for communication graphs with vertex connectivity � 2.

L���� 2.4. Suppose that the communication graph has vertex
connectivity = 1. De�ne X to be the set of processes such that no
process in set X by itself forms a vertex cut of size 1. For this graph,
an online algorithm assigns distinct vector timestamps to distinct
events such that, for any two events e and f , e ! f if and only if
timestampe < timestampf . �en the vector length must be at least
|X |.

P����. Recall that G is the communication graph formed by
the n processes.

�is proof is analogous to the proof of Lemma 2.3. �e proof is
trivial for |X | = 1.

Now assume that |X | � 2. �e proof is by contradiction. Suppose
that the vector length is s  |X | � 1.

Consider an execution in which, initially, each process pi 2 X

sends a message to each of its neighbors in the communication

g Timestamp Te is a vector

g Vector comparison: Te < Tf if

iTe[i] Tf[i] for all i

iThere exists i such that Te[i] < Tf[i]

(0,1,2) < (0,1,3)
(0,1,2) < (2,1,1)

7

Since the timestamp elements are constrained to be non-negative
integers, one of the elements of the timestamp of the last of these
computation events at p0, namely e

0
P , must be > M . Recall that

P = (M + 2)n.
Consider setW that contains event e0P and ei1, 0 < i < n. �us,

W contains n events, with one event at each of the n processes.
Create a set S of processes as follows: for each l , 0  l < s , add to S
any one process pj such that the l-th element of the timestamp of its
event inW is the largest among the l-th elements of the timestamps
of all the events inW . Clearly, p0 2 S and |S |  s  n � 1. Consider
a radial process pk < S (note that pk , p0). Such a process pk must
exist since |S |  n � 1, p0 2 S , and there are n � 1 radial processes.

Suppose that the message sent by process pk at event ek1 reaches
process p0 a�er all the other messages, including messages from
the radial processes in S , reach process p0. Let e = e

0
P+n�2. By

event e at p0, except for the message sent by process pk , all the
other messages, including messages sent by all the radial processes
in S , are received by process p0.

Rest of the proof of this lemma is similar to the proof of Lemma
2.1. In particular, de�ne vector E such that E[l] =
max0i<n timestampe i1

[l], 0  l < s . By de�nition ofW , we also
have that E[l] = maxpi 2W timestampe i1

[l], 0  l < s .
�e above assumption about the order of message delivery im-

plies that

E  timestampe0P+n�2
.

Also, since pk <W , we have that timestampek1
 E. �is implies

that timestampek1
 timestampe0P+n�2

.

Since ek1 , e
0
P+n�2, their timestamps must be distinct too. �is

implies that timestampek1
< timestampe0P+n�2

, which, in turn, im-

plies that ek1 ! e
0
P+n�2. However, e

k
1 and e0P+n�2 are concurrent

events, leading to a contradiction.
⇤

L���� 2.3. Suppose that the communication G graph has vertex
connectivity � 2. For this graph, an online algorithm assigns distinct
vector timestamps to distinct events such that, for any two events e
and f , e ! f if and only if timestampe < timestampf . �en the
vector length must be � n.

P����. Recall that G is the communication graph formed by
the n processes.

�is proof is analogous to the proof of Lemma 2.1. �e proof is
trivial for n  2.

Now assume that n � 3. �e proof is by contradiction. Suppose
that the vector length is s  n � 1.

Consider an execution inwhich, initially, each processpi , 0  i <
n, sends a message to each of its neighbors in the communication
graph. Subsequently, whenever a message is received from any
neighbor, a process forwards the message to all its other neighbors.
�us, essentially, the messages are being �ooded throughout the
network (the execution is in�nite, although we will only focus on
a �nite subset of the events).

Create a set S of processes as follows: for each l , 0  l < s , add
to S any one process pj such that timestampe j1

[l] =

max0i<n timestampe i1
[l]. Clearly, |S |  s  n � 1. Consider a

process pk < S . Such a process pk must exist since |S |  n � 1.
Suppose that all the communication channels between pk and its

neighbors are very slow, but each of the remaining communication
channels has a delay upper bounded by some constant � > 0. For
convenience of discussion, let us ignore local computation delay
between the receipt of a message at a process and its forwarding to
the neighbors. LetD be de�ned as the maximum over the diameters
of all the subgraphs of G containing n � 1 vertices. Let the delay on
all communication channels of pk be > 2�D. Because the network’s
vertex connectivity is � 2, within duration �D, n � 1 processes,
except pk , will have received messages initiated by those n � 1
processes (i.e., all messages except the message initiated by pk).

De�ne vector E such that E[l] = max0i<n timestampe i1
[l], 0 

l < s . By de�nition of S , we also have that E[l] =
maxpi 2S timestampe i1

[l], 0  l < s .
Consider any process pi , pk . Let e be the earliest receive event

at pi such that by event e (i.e., including event e), pi has received the
messages initiated by all processes except pk . Due to the de�nition
of D and � , event e occurs at pi by time �D. Since by event e , pi
has received the messages initiated by all other processes except
pk , and pk < S , we have

E  timestampe .

Also, since pk < S , we have

timestampek1
 E.

�e above two inequalities together imply that timestampek1


timestampe .
Since ek1 and e occur on di�erent processes, ek1 , e , and their

timestamps must be distinct too. �us, timestampek1
< timestampe ,

which, in turn, implies that ek1 ! e . However, ek1 and e are con-
current events, because e

k
1 is the �rst event at pk , there are no

messages received by pk before 2�D, and similarly, no process re-
ceives messages from pk during 2�D. �is results in a contradiction.

⇤

For any graph, upper bound ofn is obtained by using the standard
vector clock algorithm for n processes [8, 15]. �us, the bound n is
tight for communication graphs with vertex connectivity � 2.

L���� 2.4. Suppose that the communication graph has vertex
connectivity = 1. De�ne X to be the set of processes such that no
process in set X by itself forms a vertex cut of size 1. For this graph,
an online algorithm assigns distinct vector timestamps to distinct
events such that, for any two events e and f , e ! f if and only if
timestampe < timestampf . �en the vector length must be at least
|X |.

P����. Recall that G is the communication graph formed by
the n processes.

�is proof is analogous to the proof of Lemma 2.3. �e proof is
trivial for |X | = 1.

Now assume that |X | � 2. �e proof is by contradiction. Suppose
that the vector length is s  |X | � 1.

Consider an execution in which, initially, each process pi 2 X

sends a message to each of its neighbors in the communication

Vector Timestamps
[Fidge-Mattern 1988]

Vector Timestamps

Online algorithm è Assign timestamp when event occurs

p1

p3

p2

(1,0,0)

(1,0,1)

(1,1,1)

(3,1,1)(2,0,0)

a

c

b

Offline Vector Timestamps

Offline algorithm can often reduce timestamp size

p1

p3

p2

(1,0)

(1,1)

(1,2)

(2,2)(2,0)

a

c

b

Delay versus Timestamp Size

Delay = Time between event & timestamp assignment

10

0 End-of-execution

Online Offline

Lower Bound [Charron-Bost 1991]

g Worst-case bound: Vector length n

g Assuming complete communication graph

Figure from [Attiya-Welch]

Reduce online vector timestamp

g Exploit network topology ?

12

Vector Timestamps Lower Bounds

Star Graph Connectivity

Real-valued Integer-valued >1 1

n-1 n n n - Z

Z = #minimal
cuts

Vector Timestamps Lower Bounds

Star Graph Connectivity

Real-valued Integer-valued >1 1

n-1 n n n - Z

Z = network
parameter

Outline

g Vector timestamp bounds

g Alternate solution

15

Alternative Solution

g Events at processes in a chosen vertex cover used to
order all events

16

3. When index(inbound(pj , e)) becomes known to pi, for each g 2 Ne,

⌧(g).next[j] := index(inbound(pj , e))

The discussion of how pi learns index(inbound(pj , e)) is included with the discussion of
the query procedure in Section 4.2.

Observe that the algorithm essentially assigns vector timestamps to events in C, with vector elements
restricted to the processes in C. The next field for events outside C may change over time, as per
steps 2 and 3 above.

4.2 Response to a Query for Timestamps

Consider any event e that occurs at time er at some process pi. If by some time v � er, the event
outbound(pj , e) has occurred already, but ⌧(e).next[j] = 1, then the next[j] field of timestamp Qv(e)
of e cannot yet be determined (refer to Step 3 of the algorithm above). Hence, the query for Qv(e) is
delayed until this information becomes available to pi. To allow pi to learn the index of the receive
event for the message it sent to pj at event outbound(pj , e), process pj can send a control message
to pi carrying the index of its receive event, as well as the index of the corresponding send event
at pi (the index of the send event is piggybacked on the application message, as specified in the
pseudo-code above). Dashed arrows in Figure 2 illustrate such control messages. In particular, the
last control message in Figure 2(b) carries index 5 of the receive event at p1 and index 4 of the
corresponding send event at p3. Section 4.3 elaborates on the example in Figure 2

The overhead of the above control messages can potentially be mitigated by judiciously piggy-
backing control information on application messages. Alternatively, the control information can be
“pulled” only when needed. In particular, when a query for timestamp of some event e is per-
formed at pi at time v, pi can send a control message to the processes in C to learn any event index
information that may be necessary to return Qv(e).

To summarize, the response to a query for timestamps of event e at process pi 62 C at time v � er
is handled as follows:

• While (9pj 2 C such that outbound(pj , e) 6=?, and ⌧(e).next[j] = 1) wait.

• Return ⌧(e) as Qv(e).

4.3 Example of Inline Timestamps and Query Procedure

p1 p0 p3 p2

Figure 1: An example communication graph

Consider the communication network in Figure 1. For this network, let us choose C = {p0, p1}.
Thus, the timestamps for events at processes in C (i.e., p0 and p1) consist of a vector of length
2. Figure 2(a) shows all the events that have taken place in a certain execution by time t. In
this execution, the initial timestamp Qer(e) for event e at p0 is (3,1) because it is the third event at
process p0, and only one event at p1 happened-before event e (this dependence arises due to messages
exchanged by p0 and p1 with process p3 62 C). The timestamp for an event in C does not change after

7

cover cover

3. When index(inbound(pj , e)) becomes known to pi, for each g 2 Ne,

⌧(g).next[j] := index(inbound(pj , e))

The discussion of how pi learns index(inbound(pj , e)) is included with the discussion of
the query procedure in Section 4.2.

Observe that the algorithm essentially assigns vector timestamps to events in C, with vector elements
restricted to the processes in C. The next field for events outside C may change over time, as per
steps 2 and 3 above.

4.2 Response to a Query for Timestamps

Consider any event e that occurs at time er at some process pi. If by some time v � er, the event
outbound(pj , e) has occurred already, but ⌧(e).next[j] = 1, then the next[j] field of timestamp Qv(e)
of e cannot yet be determined (refer to Step 3 of the algorithm above). Hence, the query for Qv(e) is
delayed until this information becomes available to pi. To allow pi to learn the index of the receive
event for the message it sent to pj at event outbound(pj , e), process pj can send a control message
to pi carrying the index of its receive event, as well as the index of the corresponding send event
at pi (the index of the send event is piggybacked on the application message, as specified in the
pseudo-code above). Dashed arrows in Figure 2 illustrate such control messages. In particular, the
last control message in Figure 2(b) carries index 5 of the receive event at p1 and index 4 of the
corresponding send event at p3. Section 4.3 elaborates on the example in Figure 2

The overhead of the above control messages can potentially be mitigated by judiciously piggy-
backing control information on application messages. Alternatively, the control information can be
“pulled” only when needed. In particular, when a query for timestamp of some event e is per-
formed at pi at time v, pi can send a control message to the processes in C to learn any event index
information that may be necessary to return Qv(e).

To summarize, the response to a query for timestamps of event e at process pi 62 C at time v � er
is handled as follows:

• While (9pj 2 C such that outbound(pj , e) 6=?, and ⌧(e).next[j] = 1) wait.

• Return ⌧(e) as Qv(e).

4.3 Example of Inline Timestamps and Query Procedure

p1 p0 p3 p2

Figure 1: An example communication graph

Consider the communication network in Figure 1. For this network, let us choose C = {p0, p1}.
Thus, the timestamps for events at processes in C (i.e., p0 and p1) consist of a vector of length
2. Figure 2(a) shows all the events that have taken place in a certain execution by time t. In
this execution, the initial timestamp Qer(e) for event e at p0 is (3,1) because it is the third event at
process p0, and only one event at p1 happened-before event e (this dependence arises due to messages
exchanged by p0 and p1 with process p3 62 C). The timestamp for an event in C does not change after

7

cover cover

p0

p2

p1

a
p3

4

6

1

2

3. When index(inbound(pj , e)) becomes known to pi, for each g 2 Ne,

⌧(g).next[j] := index(inbound(pj , e))

The discussion of how pi learns index(inbound(pj , e)) is included with the discussion of
the query procedure in Section 4.2.

Observe that the algorithm essentially assigns vector timestamps to events in C, with vector elements
restricted to the processes in C. The next field for events outside C may change over time, as per
steps 2 and 3 above.

4.2 Response to a Query for Timestamps

Consider any event e that occurs at time er at some process pi. If by some time v � er, the event
outbound(pj , e) has occurred already, but ⌧(e).next[j] = 1, then the next[j] field of timestamp Qv(e)
of e cannot yet be determined (refer to Step 3 of the algorithm above). Hence, the query for Qv(e) is
delayed until this information becomes available to pi. To allow pi to learn the index of the receive
event for the message it sent to pj at event outbound(pj , e), process pj can send a control message
to pi carrying the index of its receive event, as well as the index of the corresponding send event
at pi (the index of the send event is piggybacked on the application message, as specified in the
pseudo-code above). Dashed arrows in Figure 2 illustrate such control messages. In particular, the
last control message in Figure 2(b) carries index 5 of the receive event at p1 and index 4 of the
corresponding send event at p3. Section 4.3 elaborates on the example in Figure 2

The overhead of the above control messages can potentially be mitigated by judiciously piggy-
backing control information on application messages. Alternatively, the control information can be
“pulled” only when needed. In particular, when a query for timestamp of some event e is per-
formed at pi at time v, pi can send a control message to the processes in C to learn any event index
information that may be necessary to return Qv(e).

To summarize, the response to a query for timestamps of event e at process pi 62 C at time v � er
is handled as follows:

• While (9pj 2 C such that outbound(pj , e) 6=?, and ⌧(e).next[j] = 1) wait.

• Return ⌧(e) as Qv(e).

4.3 Example of Inline Timestamps and Query Procedure

p1 p0 p3 p2

Figure 1: An example communication graph

Consider the communication network in Figure 1. For this network, let us choose C = {p0, p1}.
Thus, the timestamps for events at processes in C (i.e., p0 and p1) consist of a vector of length
2. Figure 2(a) shows all the events that have taken place in a certain execution by time t. In
this execution, the initial timestamp Qer(e) for event e at p0 is (3,1) because it is the third event at
process p0, and only one event at p1 happened-before event e (this dependence arises due to messages
exchanged by p0 and p1 with process p3 62 C). The timestamp for an event in C does not change after

7

cover cover

p0

p2

p1

a
p3

(1,2)
past

4

6

1

2

3. When index(inbound(pj , e)) becomes known to pi, for each g 2 Ne,

⌧(g).next[j] := index(inbound(pj , e))

The discussion of how pi learns index(inbound(pj , e)) is included with the discussion of
the query procedure in Section 4.2.

Observe that the algorithm essentially assigns vector timestamps to events in C, with vector elements
restricted to the processes in C. The next field for events outside C may change over time, as per
steps 2 and 3 above.

4.2 Response to a Query for Timestamps

Consider any event e that occurs at time er at some process pi. If by some time v � er, the event
outbound(pj , e) has occurred already, but ⌧(e).next[j] = 1, then the next[j] field of timestamp Qv(e)
of e cannot yet be determined (refer to Step 3 of the algorithm above). Hence, the query for Qv(e) is
delayed until this information becomes available to pi. To allow pi to learn the index of the receive
event for the message it sent to pj at event outbound(pj , e), process pj can send a control message
to pi carrying the index of its receive event, as well as the index of the corresponding send event
at pi (the index of the send event is piggybacked on the application message, as specified in the
pseudo-code above). Dashed arrows in Figure 2 illustrate such control messages. In particular, the
last control message in Figure 2(b) carries index 5 of the receive event at p1 and index 4 of the
corresponding send event at p3. Section 4.3 elaborates on the example in Figure 2

The overhead of the above control messages can potentially be mitigated by judiciously piggy-
backing control information on application messages. Alternatively, the control information can be
“pulled” only when needed. In particular, when a query for timestamp of some event e is per-
formed at pi at time v, pi can send a control message to the processes in C to learn any event index
information that may be necessary to return Qv(e).

To summarize, the response to a query for timestamps of event e at process pi 62 C at time v � er
is handled as follows:

• While (9pj 2 C such that outbound(pj , e) 6=?, and ⌧(e).next[j] = 1) wait.

• Return ⌧(e) as Qv(e).

4.3 Example of Inline Timestamps and Query Procedure

p1 p0 p3 p2

Figure 1: An example communication graph

Consider the communication network in Figure 1. For this network, let us choose C = {p0, p1}.
Thus, the timestamps for events at processes in C (i.e., p0 and p1) consist of a vector of length
2. Figure 2(a) shows all the events that have taken place in a certain execution by time t. In
this execution, the initial timestamp Qer(e) for event e at p0 is (3,1) because it is the third event at
process p0, and only one event at p1 happened-before event e (this dependence arises due to messages
exchanged by p0 and p1 with process p3 62 C). The timestamp for an event in C does not change after

7

cover cover

p0

p2

p1

a
p3

(1,2)
past

(4,6)
future

4

6

1

2

3. When index(inbound(pj , e)) becomes known to pi, for each g 2 Ne,

⌧(g).next[j] := index(inbound(pj , e))

The discussion of how pi learns index(inbound(pj , e)) is included with the discussion of
the query procedure in Section 4.2.

Observe that the algorithm essentially assigns vector timestamps to events in C, with vector elements
restricted to the processes in C. The next field for events outside C may change over time, as per
steps 2 and 3 above.

4.2 Response to a Query for Timestamps

Consider any event e that occurs at time er at some process pi. If by some time v � er, the event
outbound(pj , e) has occurred already, but ⌧(e).next[j] = 1, then the next[j] field of timestamp Qv(e)
of e cannot yet be determined (refer to Step 3 of the algorithm above). Hence, the query for Qv(e) is
delayed until this information becomes available to pi. To allow pi to learn the index of the receive
event for the message it sent to pj at event outbound(pj , e), process pj can send a control message
to pi carrying the index of its receive event, as well as the index of the corresponding send event
at pi (the index of the send event is piggybacked on the application message, as specified in the
pseudo-code above). Dashed arrows in Figure 2 illustrate such control messages. In particular, the
last control message in Figure 2(b) carries index 5 of the receive event at p1 and index 4 of the
corresponding send event at p3. Section 4.3 elaborates on the example in Figure 2

The overhead of the above control messages can potentially be mitigated by judiciously piggy-
backing control information on application messages. Alternatively, the control information can be
“pulled” only when needed. In particular, when a query for timestamp of some event e is per-
formed at pi at time v, pi can send a control message to the processes in C to learn any event index
information that may be necessary to return Qv(e).

To summarize, the response to a query for timestamps of event e at process pi 62 C at time v � er
is handled as follows:

• While (9pj 2 C such that outbound(pj , e) 6=?, and ⌧(e).next[j] = 1) wait.

• Return ⌧(e) as Qv(e).

4.3 Example of Inline Timestamps and Query Procedure

p1 p0 p3 p2

Figure 1: An example communication graph

Consider the communication network in Figure 1. For this network, let us choose C = {p0, p1}.
Thus, the timestamps for events at processes in C (i.e., p0 and p1) consist of a vector of length
2. Figure 2(a) shows all the events that have taken place in a certain execution by time t. In
this execution, the initial timestamp Qer(e) for event e at p0 is (3,1) because it is the third event at
process p0, and only one event at p1 happened-before event e (this dependence arises due to messages
exchanged by p0 and p1 with process p3 62 C). The timestamp for an event in C does not change after

7

cover cover

p0

p2

p1

a
p3

(1,2)
past

(∞,∞)
future

1

2

3. When index(inbound(pj , e)) becomes known to pi, for each g 2 Ne,

⌧(g).next[j] := index(inbound(pj , e))

The discussion of how pi learns index(inbound(pj , e)) is included with the discussion of
the query procedure in Section 4.2.

Observe that the algorithm essentially assigns vector timestamps to events in C, with vector elements
restricted to the processes in C. The next field for events outside C may change over time, as per
steps 2 and 3 above.

4.2 Response to a Query for Timestamps

Consider any event e that occurs at time er at some process pi. If by some time v � er, the event
outbound(pj , e) has occurred already, but ⌧(e).next[j] = 1, then the next[j] field of timestamp Qv(e)
of e cannot yet be determined (refer to Step 3 of the algorithm above). Hence, the query for Qv(e) is
delayed until this information becomes available to pi. To allow pi to learn the index of the receive
event for the message it sent to pj at event outbound(pj , e), process pj can send a control message
to pi carrying the index of its receive event, as well as the index of the corresponding send event
at pi (the index of the send event is piggybacked on the application message, as specified in the
pseudo-code above). Dashed arrows in Figure 2 illustrate such control messages. In particular, the
last control message in Figure 2(b) carries index 5 of the receive event at p1 and index 4 of the
corresponding send event at p3. Section 4.3 elaborates on the example in Figure 2

The overhead of the above control messages can potentially be mitigated by judiciously piggy-
backing control information on application messages. Alternatively, the control information can be
“pulled” only when needed. In particular, when a query for timestamp of some event e is per-
formed at pi at time v, pi can send a control message to the processes in C to learn any event index
information that may be necessary to return Qv(e).

To summarize, the response to a query for timestamps of event e at process pi 62 C at time v � er
is handled as follows:

• While (9pj 2 C such that outbound(pj , e) 6=?, and ⌧(e).next[j] = 1) wait.

• Return ⌧(e) as Qv(e).

4.3 Example of Inline Timestamps and Query Procedure

p1 p0 p3 p2

Figure 1: An example communication graph

Consider the communication network in Figure 1. For this network, let us choose C = {p0, p1}.
Thus, the timestamps for events at processes in C (i.e., p0 and p1) consist of a vector of length
2. Figure 2(a) shows all the events that have taken place in a certain execution by time t. In
this execution, the initial timestamp Qer(e) for event e at p0 is (3,1) because it is the third event at
process p0, and only one event at p1 happened-before event e (this dependence arises due to messages
exchanged by p0 and p1 with process p3 62 C). The timestamp for an event in C does not change after

7

cover cover

p0

p2

p1

a
p3

(1,2)
past

(∞,∞)
future

(4,∞)
future

41

2

3. When index(inbound(pj , e)) becomes known to pi, for each g 2 Ne,

⌧(g).next[j] := index(inbound(pj , e))

The discussion of how pi learns index(inbound(pj , e)) is included with the discussion of
the query procedure in Section 4.2.

Observe that the algorithm essentially assigns vector timestamps to events in C, with vector elements
restricted to the processes in C. The next field for events outside C may change over time, as per
steps 2 and 3 above.

4.2 Response to a Query for Timestamps

Consider any event e that occurs at time er at some process pi. If by some time v � er, the event
outbound(pj , e) has occurred already, but ⌧(e).next[j] = 1, then the next[j] field of timestamp Qv(e)
of e cannot yet be determined (refer to Step 3 of the algorithm above). Hence, the query for Qv(e) is
delayed until this information becomes available to pi. To allow pi to learn the index of the receive
event for the message it sent to pj at event outbound(pj , e), process pj can send a control message
to pi carrying the index of its receive event, as well as the index of the corresponding send event
at pi (the index of the send event is piggybacked on the application message, as specified in the
pseudo-code above). Dashed arrows in Figure 2 illustrate such control messages. In particular, the
last control message in Figure 2(b) carries index 5 of the receive event at p1 and index 4 of the
corresponding send event at p3. Section 4.3 elaborates on the example in Figure 2

The overhead of the above control messages can potentially be mitigated by judiciously piggy-
backing control information on application messages. Alternatively, the control information can be
“pulled” only when needed. In particular, when a query for timestamp of some event e is per-
formed at pi at time v, pi can send a control message to the processes in C to learn any event index
information that may be necessary to return Qv(e).

To summarize, the response to a query for timestamps of event e at process pi 62 C at time v � er
is handled as follows:

• While (9pj 2 C such that outbound(pj , e) 6=?, and ⌧(e).next[j] = 1) wait.

• Return ⌧(e) as Qv(e).

4.3 Example of Inline Timestamps and Query Procedure

p1 p0 p3 p2

Figure 1: An example communication graph

Consider the communication network in Figure 1. For this network, let us choose C = {p0, p1}.
Thus, the timestamps for events at processes in C (i.e., p0 and p1) consist of a vector of length
2. Figure 2(a) shows all the events that have taken place in a certain execution by time t. In
this execution, the initial timestamp Qer(e) for event e at p0 is (3,1) because it is the third event at
process p0, and only one event at p1 happened-before event e (this dependence arises due to messages
exchanged by p0 and p1 with process p3 62 C). The timestamp for an event in C does not change after

7

cover cover

p0

p2

p1

a
p3

(1,2)
past

(4,∞)
future

(∞,∞)
future

(4,6)
future

4

6

1

2

g

p1

p2

p0

p3

vertex
cover

1,(0,1)

3,(2,3)

5,(2,5)

1,(1,0) 2,(2,0) 4,(4,1)

2,(1,0),(∞,5) 3,(1,0),(∞,5)

1,(0,1),(4,∞)

3,(3,0)

2,(0,1),(4,∞)

3,(0,1),(4,∞)

1,(0,0),(∞,5)

2,(0,2) 4,(2,4)

e

f

h

Figure 2: Illustration of Our Algorithm

4.2 Proof of Correctness
To show that the de�nitions ofmpre andmpost su�ce to capture
causality between two events e and f , we need to identify how
to compare their timestamps. Since these inline timestamps com-
bine the ideas from vector clocks (for processes in VC) and the
ideas from the clock for star network (for processes outsideVC),
the comparison also focuses on whether events are from VC or
outsides VC.

Recall that the standard vector clock comparison to compare
two vectors is to compare the corresponding elements. Time. Also,
mpree < mpref i�mpree  mpref ^mpree , mpref . Using this
comparison, we formalize our correctness requirement in �eorem
4.1:

T������ 4.1. For any two events, e and f , if timestampe , ?
and timestampf , ? then e ! f i� timestampe < timestampf ,
where
timestampe < timestampf i�

8>>>>><
>>>>>:

mpree < mpref if ide 2 VC and idf 2 VC
mpree  mpref if ide 2 VC and idf < VC
9c 2 VC ::mposte [c]  mpref [c] if ide < VC and idf , ide
mctre < mctrf if ide < VC and idf = ide

P����. We sketch the proof based on the four cases in com-
parison of timestamps. In this discussion, let c be a process in
VC.

ide 2 VC and idf 2 VC: Observe thatmpre essentially cre-
ates the vector clock among processes in VC. Hence,
e ! f i�mpree < mpref .

ide 2 VC and idf < VC: By de�nition ofmpref , given an
event x on a process in VC, x happened before f i�
mctrx  mpref [c]. Also, for eventx on c ,mctrx =mprex [c].
Hence, if e is on VC and f on a process outside VC then
e happened before f i�mpree  mpref .

ide < VC and idf , ide : SinceVC is a vertex cover, if idf ,
ide then e happened before f i� there exists an event x
on a process, say c inVC and a messagem from ide to c
such that (1) e = send(m) or e happened before send(m), (2)
x = recei�e(m) or recei�e(m) happened before x and (3)
either f = x or x happened before f . Regarding the �rst

condition, e happened before x i�mposte [c]  mprex [c] =
mctrx . Regarding the second condition, (x = f or x hap-
pened before f) i� mprex  mpref . �us, e happened
before f i� 9c such thatmposte [c]  mpre[c].

ide < VC and idf = ide : In this case, by de�nition ofmctr ,
it follows that e happened before f i�mctre < mctrf .

⇤

T������ 4.2. For any event e , |timestampe |  2|VC| + 2

P����. �is follows from the fact that mpre and mpost each
contain at most |VC| elements. Additionally, id and mctr each
require one element. ⇤

T������ 4.3. Given a system with n processes where each process
has (at most) K events, for any event e , timestampe requires at most
(2|VC| + 1) log(K + 1) + logn bits.

P����. �is follows from the fact that ctr , each entry inmpre

and each entry in mpost requires  log(K + 1) bits each, and id

requires logn bits.
⇤

4.3 Lower Bounds for O�line Timestamps
In Section 2, we showed that for online timestamps, with standard
vector clock comparison, size of the clock was either n or n � 1
depending upon whether we permit real-valued timestamps or only
integer-valued timestamps. In Section 3, we presented an algorithm
for the star graph that had 4 entries in every timestamp. In this
section, we consider the minimum size for such timestamps. �is
lower bound also applies to o�ine timestamps.

T������ 4.4. Given a star graph consisting of 4 processes, there
does not exist an o�ine algorithm that assigns each event e in every
execuction a vector �ce of size 2 such that

e ! f

i�
�ce < �cf , where < denotes the standard vector clock comparison

P����. �e proof is presented in [23]. ⇤

Based on the results in this section, we �nd that inline times-
tamps provide a signi�cant reduction compared to the size of online
timestamps. Also, for the star graph, the size of the inline vector
timestamps is within 1 of feasible lower bound. An open question
in this context is whether the size of vector timestamps can be
reduced to 3 elements.

5 RELATEDWORK AND DISCUSSION
Closest to our work is (i) a timestamp algorithm for synchronous
messages by Garg et al. [10, 11], (ii) timestamps used in causal
shared memory, particularly, Swi�Cloud [25] and Lazy Replication
[13], and (iii) a hierarchical cluster timestamping scheme [24]. We
will discuss the prior work below.
Timestamps in message-passing systems: �e concept of vec-
tor clock or vector timestamp was introduced by Ma�ern [15] and
Fidge [8]. Charron-Bost [2] showed that there exist communication
pa�erns that require vector timestamp length equal to the number

3. When index(inbound(pj , e)) becomes known to pi, for each g 2 Ne,

⌧(g).next[j] := index(inbound(pj , e))

The discussion of how pi learns index(inbound(pj , e)) is included with the discussion of
the query procedure in Section 4.2.

Observe that the algorithm essentially assigns vector timestamps to events in C, with vector elements
restricted to the processes in C. The next field for events outside C may change over time, as per
steps 2 and 3 above.

4.2 Response to a Query for Timestamps

Consider any event e that occurs at time er at some process pi. If by some time v � er, the event
outbound(pj , e) has occurred already, but ⌧(e).next[j] = 1, then the next[j] field of timestamp Qv(e)
of e cannot yet be determined (refer to Step 3 of the algorithm above). Hence, the query for Qv(e) is
delayed until this information becomes available to pi. To allow pi to learn the index of the receive
event for the message it sent to pj at event outbound(pj , e), process pj can send a control message
to pi carrying the index of its receive event, as well as the index of the corresponding send event
at pi (the index of the send event is piggybacked on the application message, as specified in the
pseudo-code above). Dashed arrows in Figure 2 illustrate such control messages. In particular, the
last control message in Figure 2(b) carries index 5 of the receive event at p1 and index 4 of the
corresponding send event at p3. Section 4.3 elaborates on the example in Figure 2

The overhead of the above control messages can potentially be mitigated by judiciously piggy-
backing control information on application messages. Alternatively, the control information can be
“pulled” only when needed. In particular, when a query for timestamp of some event e is per-
formed at pi at time v, pi can send a control message to the processes in C to learn any event index
information that may be necessary to return Qv(e).

To summarize, the response to a query for timestamps of event e at process pi 62 C at time v � er
is handled as follows:

• While (9pj 2 C such that outbound(pj , e) 6=?, and ⌧(e).next[j] = 1) wait.

• Return ⌧(e) as Qv(e).

4.3 Example of Inline Timestamps and Query Procedure

p1 p0 p3 p2

Figure 1: An example communication graph

Consider the communication network in Figure 1. For this network, let us choose C = {p0, p1}.
Thus, the timestamps for events at processes in C (i.e., p0 and p1) consist of a vector of length
2. Figure 2(a) shows all the events that have taken place in a certain execution by time t. In
this execution, the initial timestamp Qer(e) for event e at p0 is (3,1) because it is the third event at
process p0, and only one event at p1 happened-before event e (this dependence arises due to messages
exchanged by p0 and p1 with process p3 62 C). The timestamp for an event in C does not change after

7

cover cover

Happened-Before

Intuitively:

e à f iff future(e) past(f)

24

Since the timestamp elements are constrained to be non-negative
integers, one of the elements of the timestamp of the last of these
computation events at p0, namely e

0
P , must be > M . Recall that

P = (M + 2)n.
Consider setW that contains event e0P and ei1, 0 < i < n. �us,

W contains n events, with one event at each of the n processes.
Create a set S of processes as follows: for each l , 0  l < s , add to S
any one process pj such that the l-th element of the timestamp of its
event inW is the largest among the l-th elements of the timestamps
of all the events inW . Clearly, p0 2 S and |S |  s  n � 1. Consider
a radial process pk < S (note that pk , p0). Such a process pk must
exist since |S |  n � 1, p0 2 S , and there are n � 1 radial processes.

Suppose that the message sent by process pk at event ek1 reaches
process p0 a�er all the other messages, including messages from
the radial processes in S , reach process p0. Let e = e

0
P+n�2. By

event e at p0, except for the message sent by process pk , all the
other messages, including messages sent by all the radial processes
in S , are received by process p0.

Rest of the proof of this lemma is similar to the proof of Lemma
2.1. In particular, de�ne vector E such that E[l] =
max0i<n timestampe i1

[l], 0  l < s . By de�nition ofW , we also
have that E[l] = maxpi 2W timestampe i1

[l], 0  l < s .
�e above assumption about the order of message delivery im-

plies that

E  timestampe0P+n�2
.

Also, since pk <W , we have that timestampek1
 E. �is implies

that timestampek1
 timestampe0P+n�2

.

Since ek1 , e
0
P+n�2, their timestamps must be distinct too. �is

implies that timestampek1
< timestampe0P+n�2

, which, in turn, im-

plies that ek1 ! e
0
P+n�2. However, e

k
1 and e0P+n�2 are concurrent

events, leading to a contradiction.
⇤

L���� 2.3. Suppose that the communication G graph has vertex
connectivity � 2. For this graph, an online algorithm assigns distinct
vector timestamps to distinct events such that, for any two events e
and f , e ! f if and only if timestampe < timestampf . �en the
vector length must be � n.

P����. Recall that G is the communication graph formed by
the n processes.

�is proof is analogous to the proof of Lemma 2.1. �e proof is
trivial for n  2.

Now assume that n � 3. �e proof is by contradiction. Suppose
that the vector length is s  n � 1.

Consider an execution inwhich, initially, each processpi , 0  i <
n, sends a message to each of its neighbors in the communication
graph. Subsequently, whenever a message is received from any
neighbor, a process forwards the message to all its other neighbors.
�us, essentially, the messages are being �ooded throughout the
network (the execution is in�nite, although we will only focus on
a �nite subset of the events).

Create a set S of processes as follows: for each l , 0  l < s , add
to S any one process pj such that timestampe j1

[l] =

max0i<n timestampe i1
[l]. Clearly, |S |  s  n � 1. Consider a

process pk < S . Such a process pk must exist since |S |  n � 1.
Suppose that all the communication channels between pk and its

neighbors are very slow, but each of the remaining communication
channels has a delay upper bounded by some constant � > 0. For
convenience of discussion, let us ignore local computation delay
between the receipt of a message at a process and its forwarding to
the neighbors. LetD be de�ned as the maximum over the diameters
of all the subgraphs of G containing n � 1 vertices. Let the delay on
all communication channels of pk be > 2�D. Because the network’s
vertex connectivity is � 2, within duration �D, n � 1 processes,
except pk , will have received messages initiated by those n � 1
processes (i.e., all messages except the message initiated by pk).

De�ne vector E such that E[l] = max0i<n timestampe i1
[l], 0 

l < s . By de�nition of S , we also have that E[l] =
maxpi 2S timestampe i1

[l], 0  l < s .
Consider any process pi , pk . Let e be the earliest receive event

at pi such that by event e (i.e., including event e), pi has received the
messages initiated by all processes except pk . Due to the de�nition
of D and � , event e occurs at pi by time �D. Since by event e , pi
has received the messages initiated by all other processes except
pk , and pk < S , we have

E  timestampe .

Also, since pk < S , we have

timestampek1
 E.

�e above two inequalities together imply that timestampek1


timestampe .
Since ek1 and e occur on di�erent processes, ek1 , e , and their

timestamps must be distinct too. �us, timestampek1
< timestampe ,

which, in turn, implies that ek1 ! e . However, ek1 and e are con-
current events, because e

k
1 is the �rst event at pk , there are no

messages received by pk before 2�D, and similarly, no process re-
ceives messages from pk during 2�D. �is results in a contradiction.

⇤

For any graph, upper bound ofn is obtained by using the standard
vector clock algorithm for n processes [8, 15]. �us, the bound n is
tight for communication graphs with vertex connectivity � 2.

L���� 2.4. Suppose that the communication graph has vertex
connectivity = 1. De�ne X to be the set of processes such that no
process in set X by itself forms a vertex cut of size 1. For this graph,
an online algorithm assigns distinct vector timestamps to distinct
events such that, for any two events e and f , e ! f if and only if
timestampe < timestampf . �en the vector length must be at least
|X |.

P����. Recall that G is the communication graph formed by
the n processes.

�is proof is analogous to the proof of Lemma 2.3. �e proof is
trivial for |X | = 1.

Now assume that |X | � 2. �e proof is by contradiction. Suppose
that the vector length is s  |X | � 1.

Consider an execution in which, initially, each process pi 2 X

sends a message to each of its neighbors in the communication

Alternate Timestamps

g Size proportional to cover size

g Minimum 1 round-trip delay in determining
“future” component

• Potentially much longer

25

Applications

Smaller timestamps not interesting if the cost of
using them is too high

g à easy to verify

g Maximal consistent cuts (with a slightly modified
timestamp)

g Predicate detection

26

