Effectiveness of Delaying Timestamp Computation

Sandeep Kulkarni Michigan State University Nitin Vaidya
University of Illinois

System Model

- Asynchronous system
- n processes
- Pairwise message-passing channels
- Unicasts
- Incomplete network

Goal

Assign timestamp T_e to each event e

such that

$$T_e < T_f$$
 iff $e \rightarrow f$

Much Related Work

Message-passing

- Vector timestamps [Fidge-Mattern 1988]
- Vector lower bound [Charron-Bost 1991]
- Lower bound [Melideo 2001]
- Synchronous messages [Garg 2002]
- Causal separators [Rodriguez 1995]
- Exploiting locality [Meldal 1999]
- Plausible clocks [Torres-Rojas 1999]
- Cluster timestamps [Ward 2001]
- ...

Shared memory

- Lazy replication [Ladin 1992]
- SwiftCloud [Zawirski 2015]
- Version vectors, dotted version vectors [Almeida 2014]
- D ...

Outline

- Vector timestamp bounds
- Alternate solution

Vector Timestamps [Fidge-Mattern 1988]

- Timestamp T_e is a vector
- Vector comparison: T_e < T_f if
 - ullet $T_{e}[i] \leq T_{f}[i]$ for all i
 - There exists i such that T_e[i] < T_f[i]

Vector Timestamps [Fidge-Mattern 1988]

- Timestamp T_e is a vector
- Vector comparison: T_e < T_f if
 - ullet $T_{e}[i] \leq T_{f}[i]$ for all i
 - There exists i such that T_e[i] < T_f[i]

$$(0,1,2) < (0,1,3)$$

 $(0,1,2) \nleq (2,1,1)$

Vector Timestamps

Online algorithm → Assign timestamp when event occurs

Offline Vector Timestamps

Offline algorithm can often reduce timestamp size

Delay versus Timestamp Size

Delay = Time between event & timestamp assignment

Online
Offline
End-of-execution

Lower Bound [Charron-Bost 1991]

- Worst-case bound: Vector length n
- Assuming complete communication graph

Reduce online vector timestamp

Exploit network topology ?

Vector Timestamps Lower Bounds

Star Graph		Connectivity	
Real-valued	Integer-valued	>1	1
n-1	n	n	n - Z

Z = #minimal cuts

Vector Timestamps Lower Bounds

Star Graph	Connectivity	
Real-valued Integer-valued	>1	1
n-1 n	n	n - Z

Z = network parameter

Outline

- Vector timestamp bounds
- Alternate solution

Alternative Solution

Events at processes in a chosen vertex cover used to order all events

Happened-Before

Intuitively:

 $e \rightarrow f$ iff future(e) $\leq past(f)$

Alternate Timestamps

- Size proportional to cover size
- Minimum 1 round-trip delay in determining "future" component
 - Potentially much longer

Applications

Smaller timestamps not interesting if the cost of using them is too high

- → easy to verify
- Maximal consistent cuts (with a slightly modified timestamp)
- Predicate detection