
Course notes for Distributed Systems
Nitin Vaidya
March 14, 2016

c� 2016 Vaidya 1c� 2016 Vaidya 1c� 2016 Vaidya 1

c� 2016 Vaidya 2c� 2016 Vaidya 2c� 2016 Vaidya 2

Chapter 1

Distributed Shared Memory

1.1 Chapter Overview

In this chapter, we consider a distributed shared memory abstraction implemented using message-

passing. That is, processes communicate via messages to implement an abstraction of shared

memory. Distributed shared memory may be implemented in many di↵erent ways. Consider the

two approaches below. In both approaches, multiple copies of each shared memory variable will be

maintained.

• Approach 1: In the first approach, the replicas are stored in locations that are distinct from

users that access the replicas. This is a common approach realized today using replicas stored

at geographically distributed data centers. For instance, users of a social network may upload

pictures, which can then be viewed by other users. These pictures are stored in multiple

replicas, which provides two benefits. First, the latency of access can be reduced by allowing

each user to access the replica close to them. Secondly, maintaining multiple replicas improves

fault-tolerance. Even if one of the replicas becomes unavailable for some reason, the data is

not entirely lost if another replica remains available. In this approach, the users themselves

do not need to maintain a copy of the shared data locally. Any shared data that the users

wants to view (Read) can be accessed from one of the replicas. Similarly, any updates to the

data that the users may want to perform are achieved by modifying the replicas.

• Approach 2: In the second approach, we do not distinguish between the replicas and the users.

All the users maintain a copy (or replica) of the shared data. Thus, when a user updates a

shared data, the updates may be propagated to all the users.

3

1.2. SOME ALGORITHMS FOR IMPLEMENTING SHARED MEMORY

On the one hand, the above two approaches are quite di↵erent. The number of replicas in Approach

1 may be quite small, the number of users may be very large. Maintaining a large number of replicas,

as would be required in Approach 2, can be very expensive. On the other hand, for defining the

notion of consistency of shared data, we do not necessarily have to distinguish between the two

approaches. Secondly, in Approach 1, if we restrict each user to access all the shared data from a

specific replica (say, the closest replica), then e↵ectively the user population is partitioned based

on the replicas that they directly access. Thus, each replica can be viewed as a “mega-user” that

represents the collection of users that are associated with that replica. With this viewpoint then,

Approach 1 becomes analogous to Approach 2.

For convenience of presentation, we will hereafter assume Approach 2, with the understanding

that the discussion is also relevant for Approach 1. As noted above, maintaining multiple replicas

has the potential benefit of improving latency of access, and also the possibility of improving

availability of the shared data despite the failure of some the replicas (e.g., replica crash). In this

chapter, however, we will not consider failure of the replicas.

1.2 Some Algorithms for Implementing Shared Memory

Let us consider n processes p1, p2, · · · , pn that implement the distributed shared memory. Each

process maintains a local copy of each shared variable. In this section, we first present three di↵erent

algorithms for implementing distributed shared memory. Each algorithm specifies the actions taken

when a process writes to a shared variable, and the actions taken when a process reads a shared

variable.

To illustrate the behavior of the di↵erent algorithms, we consider the sequence of shared memory

operations performed by three processes, p1, p2 and p3 as shown in Figure 1.1.

p1 p2 p3

Write(X,2) Read(X) Write(X,5)

Read(X) Read(X)

Read(X)

Figure 1.1: Example programs

Algorithm 1

In Algorithm 1, on a Read operation, each process simply reads its local copy of the desired shared

memory location, and on a Write, performs an update locally, and sends the update messages to

c� 2016 Vaidya 4c� 2016 Vaidya 4c� 2016 Vaidya 4

1.2. SOME ALGORITHMS FOR IMPLEMENTING SHARED MEMORY

other processes, so that they can update their own local replicas accordingly.

When operation Write(X,v) is invoked at process pi:

(step w1) Write v in the replica of variable X at pi.

(step w2) Send message Write(X, v) to each of the remaining processes (i.e., processes other than

pi).

(step w3) Return Ack() indicating completion of the Write(X,v) operation

When process pi receives a message Write(Y,w):

(step w4) process pi writes value w in its local copy of shared variable Y .

When process pi invokes operation Read(X):

(step r1) read local copy of variable X at process pi; suppose that the value read is v.

(step r2) return Ack(X,v) to pi as the response to Read(X), which also indicates the completion of

the Read(X) operation.

The algorithm above is event-driven, with the pseudo-code specifying what happens when three

events take place: (i) when a Write operation is invoked by some process, (ii) when some process

receives a Write message from another process, and (iii) when a Read operation is invoked by

some process. For Write and Read both, the process that invokes the operation receives a response

when the operation has been completed. For a Write, the process receives an Ack() indicating the

completion of the operation, whereas for a Read, the process receives Ack(X, v) indicating that the

Read operation on X has returned value v.

Figures are included in a separate file provided with this handout.

Consider Figure 1. In Figure 1, the timeline at the top is for process p1, followed by processes p2
and p3. Also, white circles are used to depict the invocation of a Read or Write operation, and for

the response (Ack) for such operations. The dark circles are used to indicate events such as local

computation (including write to a local copy of a variable) and message send/receive events. In

Figure 1, when process p1 invokes the Write(X,2) operation, it writes 2 in its local copy of variable

X (named X1 in the figure), and then sends message Write(X, 2) to the other processes, p2 and p3,

as per steps w1 and w2 in the above algorithm. After sending these messages, the Write operation

c� 2016 Vaidya 5c� 2016 Vaidya 5c� 2016 Vaidya 5

1.2. SOME ALGORITHMS FOR IMPLEMENTING SHARED MEMORY

is complete, and the completion is signalled to process p1 by an Ack() message, as per step w3.

When processes p2 and p3 receive the Write(X, 2) message from p1, they write 2 in their local copy

of variable X, as per step w4 above. Observe that the Read and Write operations both require a

non-zero amount of time (this is the duration of time between invocation of an operation and its

response). The delay in completing these operations may potentially be quite large if the DSM layer

at pi encounters a large scheduling delay while performing the steps described in the algorithm. In

asynchronous systems, it is assumed that there is no finite bound on the time required to complete

each operation.

For the Read operation, no inter-process communication is required in Algorithm 1. The value

of the local copy of the desired shared variable is returned in response to a Read operation. For

example, the Read(Z) operation at process p2 will return value 2, which was previously written due

to the Write(Z,2) operation invoked by process p1.

Observe that Algorithm 1 has a peculiar behavior when multiple write operations are invoked by

di↵erent processes. In Figure 1, process p1 invokes Write(X,5) operation some time after process

p1 invokes Write(X,2). As per step w1, process p1 writes 2 to its local copy of variable X, and

later writes 5 when it receives the Write(X, 5) message from p3. On the other hand, process p3

writes 5 to its local copy of variable X, and later writes 2 to X when it receives message Write(X, 2)

from process p1. Thus, the replicas at processes p1 and p3 have di↵erent values after the execution

shown in the figure. Due to the di↵erent order in which the updates are performed at p1 and p2,

while p1’s first Read(X) returns value 2, and its second Read(X) returns value 5, p2’s first Read(X)

returns value 5, and its second Read(X) returns 2. Due to this phenomenon, p1 and p2 have an

inconsistent view of the updates performed on shared variable X. In our example, there are only

two Write operations performed. When there are more Write operations, it should be easy to see

that each replica may go through a sequence of states that is di↵erent from the other replicas, and

all the di↵erent replicas may never reach an identical state.

Last-writer-wins: One approach to ensure that all the replicas eventually become identical is

to use a timestamp mechanism to determine which values are older. Suppose that each replica of

variable X not only stores its value, but also the time at which the Write that resulted in that value

was invoked. To implement this, the Write messages carry the time at which the corresponding

Write operation is invoked. Suppose that the time at which Write(X,2) is invoked at p1 is t1

(where t1 > 0), and the time at which Write(X,5) is invoked at p3 is t3, where t1 < t3. The initial

timestamp of all variables is 0. When p1 invokes the Write, it updates its local copy of X because

the local copy’s timestamp 0 is smaller that t1. The timestamp is updated to t1 when value 2 is

written to X. When p1 receives the Write message from p3, the timestamp of the local copy is t1,

which is smaller than the timestamp received with the Write message from p3; hence the local copy

of p1 is updated to value 5 and timestamp t2. On the other hand, when p2 and p3 receive the Write

message from p1, their local timestamps for X are already t2, which is greater than timestamp t1

c� 2016 Vaidya 6c� 2016 Vaidya 6c� 2016 Vaidya 6

Nitin Vaidya

Nitin Vaidya

Nitin Vaidya

Correction:
p1 highlighted
in green should
be p3

1.2. SOME ALGORITHMS FOR IMPLEMENTING SHARED MEMORY

received with the Write message from p1. Hence p2 and p3 do not write value 2 to their local copy

of X on receiving the message from p1 (i.e., p2 and p3 simply ignore the message from p1). Thus,

when all the replicas have received both the Write messages, the final value of all the local copies

of X will be identical (i.e., the values of local copies of X eventually become identical). The above

approach for using timestamps is called the last-writer-wins rule.

Let us name the above modified Algorithm 1 as Algorithm 1T (or Algorithm 1 with Timestamps).

Algorithm 2

Algorithm 2 uses the same procedure for a Read operation as Algorithm 1. The procedure for Write

in Algorithm 2 uses totally-ordered broadcast to deliver the new value of the written variable to all

the replicas. By using totally-ordered broadcast to propagate new values to the replicas, Algorithm

2 ensures that all replicas receive all the updates in an identical order. Thus, this approach ensures

that eventually all replicas will have an identical state, unlike the original Algorithm 1. Algorithm

2 also avoids violation of causality, unlike Algorithm 1T, although this may not be immediately

apparent.

When process pi invokes operation Write(X,v):

(step w5) pi performs a totally-ordered multicast of Write(X, v).

(step w6) When totally-order multicast message Write(X, v) is delivered to process pi, write value

v to the local copy of X at pi.

(step w7) Return Ack() indicating completion of the Write(X,v) operation

When process pi is delivered totally-ordered multicast message Write(Y,w) for multicast

performed by some other process pj:

(step w8) Write value w to the local copy of Y at pi.

When process pi invokes operation Read(X):

(step r1) Read local copy of variable X at process pi; suppose that the value read is v.

(step r2) Return Ack(X,v) to pi as the response to Read(X), which also indicates the completion

of the Read(X) operation.

c� 2016 Vaidya 7c� 2016 Vaidya 7c� 2016 Vaidya 7

1.2. SOME ALGORITHMS FOR IMPLEMENTING SHARED MEMORY

The key distinction between Algorithms 1 and 2 is the use of totally-ordered broadcast to deliver

Write requests to the replicas. Figure 2 shows an execution that uses Algorithm 2. Although the

operations performed in Figure 2 are identical to those in Figure 1, the outcomes are di↵erent. In

particular, in Figure 2, observe that when processes p1 and p3 invoke Write(X,2) and Write(X,5),

respectively, they performs totally-ordered multicast of Write(X, 2), and Write(X, 5). Due to the

use of total-ordering, all processes deliver the multicast messages in identical order, as shown in

Figure 2. Write(X, 5) is delivered first, followed by Write(X, 2). Each process writes value 5 to

its local copy of X when Write(X, 5) is delivered, and then writes 2 when Write(X, 2) is delivered.

In particular, process p1 updates X to 5 first because the multicast message from p3 is delivered

before p1’s own multicast message. Using totally-ordered multicast for the Write messages ensures

that all replicas finish the execution with value 2 in X.

Algorithm 3

For a Write operation, Algorithm 3 uses the same procedure as Algorithm 2, but in Algorithm

3, the procedure for Read operations also uses totally-ordered broadcast. In Algorithm 3, total

ordering is achieved over all operations, Reads and Writes both.

When process pi invokes operation Write(X,v):

(step w5) pi performs a totally-ordered multicast of Write(X, v).

(step w6) When totally-order multicast message Write(X, v) is delivered to process pi, write value

v to the local copy of X at pi.

(step w7) Return Ack() indicating completion of the Write(X,v) operation

When process pi is delivered totally-ordered multicast message Write(Y,w) for multicast

performed by some other process pj:

(step w8) Write value w to the local copy of Y at pi.

When process pi invokes operation Read(X):

(step r3) pi performs a totally-ordered multicast of Read(X).

(step r4) When totally-ordered multicast of Read(X) initiated by pi is delivered to process pi, read

the value of local copy of X at pi; suppose that the value read is v.

c� 2016 Vaidya 8c� 2016 Vaidya 8c� 2016 Vaidya 8

1.3. CONSISTENCY MODELS

(step r5) Return Ack(X,v) to pi as the response to Read(X), which also indicates the completion

of the Read(X) operation.

When process pi is delivered totally-ordered multicast of Read(Y) initiated by some

other process pj:

(step r6) No action is needed. Discard the message.

In Algorithm 3, Reads and Writes both result in totally-ordered broadcast. The behavior for

Write is identical to that of Algorithm 2. For Read(X) operation invoked by process pi, process pi
only reads its local copy of variable X after it is delivered its own totally-ordered multicast message

Read(X) (as per step r4). All other processes besides pi simply ignore the multicast of Read(X)

by pi, as per step r6. Figure 3 illustrates the execution of operations listed in Figure 1.1. Compare

Figure 3 with Figure 2.

1.3 Consistency Models

A consistency model describes the constraints that must be satisfied by executions using shared

memory. A distributed shared memory system is said to implement a certain consistency model

if all executions using the DSM satisfy the desired consistency model. A general yet impractical

method to define a consistency model is by using a set of executions, which we will call its execution

set. An execution satisfies a certain consistency model if and only if the execution is in the execution

set specified for that consistency model. In practice, this type of definition for a consistency model

is not very useful, since it requires us to enumerate all the allowed executions. It is better to

have a more compact way of defining a consistency model. As an alternative, we may use a DSM

implementation itself as the definition of a consistency model. For instance, we may define a

consistency model as the set of all executions that can occur with Algorithm 2 presented earlier.

This results in a more compact specification since we only need to specify the algorithm, not the

actual execution set. But this is still not the most desirable way to specify the consistency model

since it does not really reveal anything interesting about the properties satisfied by the executions

in the execution set. Therefore, the preferred approach is to define a consistency model using a set

of desirable properties that must be satisfied by the executions, and then develop algorithms that

ensure that all resulting executions will satisfy the desired properties. In fact, the DSM algorithms

presented earlier implement some well-known consistency models to be defined soon.

In our illustrations of executions using the di↵erent DSM algorithms, we showed the times at

which various operations were invoked and when they were completed (i.e., when their responses

c� 2016 Vaidya 9c� 2016 Vaidya 9c� 2016 Vaidya 9

1.3. CONSISTENCY MODELS

were received). We also showed the messages that were sent to implement the shared memory

operations. These messages are implementation-dependent. For the purpose of defining consistency,

the details of the implementations are not of interest. Only the sequence of operations performed,

timing of invocation and response of each operations, and the returned values (for Reads) are taken

into account when determining whether an execution satisfies a certain consistency model. With

this in mind, Figures 4, 5 and 6 redraw the executions in Figures 1, 2 and 3, respectively. The

redrawn figures show the invocations and responses for all the operations, but omit the internal

details of the DSM implementation.

A large number of consistency models have been proposed so far. We will define four consistency

models in this chapter:

• Linearizability (also called Atomic Consistency)

• Sequential consistency

• Causal consistency

• Eventual consistency

Before we can define these consistency models, we need to introduce some terminology.

A permutation of the operations in a given execution consists of a single sequence in which all

the operations performed by all the processes are included, and the operations performed at any

single process appear in the same order as in the given execution. For instance, let us consider the

following permutation of the operations in Figure 5. To help identify the process that performed

each operation, the process index is included as a subscript below. Also, the value returned by a

read operation is included as the second parameter of the Read. Thus, Read(X) at process p1 that

returned value 5 is written as Read1(X, 5) below.

Write1(X, 2), Write3(X, 5), Read1(X, 2), Read2(X, 5), Read2(X, 2), Read1(X, 2)

In the execution in Figure 5, some of the operations overlap in time (for instance, Write1(X, 2)

and Write3(X, 5)), and yet in the above permutation we specify them in a single totally-ordered

sequence.

Observe that the operations performed by p1 appear in the above permutation in the same

order as the order of operations at p1 in the execution in Figure 5. In fact, this is true for all

the processes. Hereafter we will only consider permutations that have this per-process order-

preserving property.

Now let us consider whether the above permutation “makes sense”. Specifically, if the operations

were indeed to be performed – one at a time – in the order specified in the above permutation, could

c� 2016 Vaidya 10c� 2016 Vaidya 10c� 2016 Vaidya 10

1.3. CONSISTENCY MODELS

the various Reads indeed return the specified values? The answer is no for the above permutation,

sinceRead1(X, 2) returns 2, but the last Write prior to this Read in the permutation isWrite3(X, 5).

We want to consider only those permutations that “make sense”.

In particular, we will say that a permutation is valid if each Read operation in the permutation

returns the value written by the most recent preceding write to the variable accessed by that Read

(if no such Write exists, then the Read must return the initial value of the variable). While the

above permutation is not valid, the permutation below (of the same set of operations in Figure 5)

is valid.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read2(X, 2), Read1(X, 2), Read1(X, 2)

In fact, there is an alternate permutation for the operations that is also valid (as noted below, we

only consider permutations that also preserve the order of operations at each individual process).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

We will say that a permutation preserves the real-time order of operations provided that the

following holds true: if operation op1 finishes (i.e., its response is received) before operation op2 is

invoked, then op1 must appear in the permutation before op2.

Does the last permutation above preserve the real-time order? The answer is no, because

Write1(X, 2) finishes at p1 before Read2(X, 5) is invoked at p2, and yet Read2(X, 5) appears before

Write1(X, 2) in the permutation. Is there any permutation of the execution in Figure 5 that is

per-process order-preserving, valid and real-time order-preserving? You should convince

yourself that no such permutation exists for the operations in Figure 5.

Now consider the execution in Figure 6. In this case, there is indeed a permutation that is

per-process order-preserving, valid and real-time order-preserving, as shown below.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

In fact, this permutation is identical to the last permutation above for Figure 5. Why is it preserving

real-timer order for Figure 6 when it was not achieving that property previously? This is because the

timing of the operations is a↵ected by the use of total-ordering of Read and Write in Algorithm 3 (on

the other hand, Algorithm 2, on totally orders the Writes). In Figure 6, observe that Write1(X, 2)

and Read2(X, 5) are overlapping in time – thus, the real-time order property does not dictate

any particular order between them in the permutation. The real-time property only applies if one

operation finishes before another is invoked, and does not apply to overlapping operations. In

Figure 6, the two Writes are also overlapping, and similarly the last Read by process p1 and p2 are

overlapping.

With this background, now we are ready to define two important consistency models. In all the

discussion here, it is assumed that each process can have only one pending operation

c� 2016 Vaidya 11c� 2016 Vaidya 11c� 2016 Vaidya 11

1.3. CONSISTENCY MODELS

at any time. For instance, a process may not invoke a Write operation, and invoke a

Read operation before the response for that Write is received.

Linearizability

Definition 1 Linearizability: An execution is said to be linearizable, if there exists a permutation

of the operations in the execution that is per-process order-preserving, valid and real-time

order-preserving.

While every operation requires a non-zero amount of time, in an execution satisfying linearizabil-

ity, each operation “appears to take e↵ect” instantaneously. More precisely, an execution satisfying

linearizablity is equivalent to another (hypothetical) execution that satisfies the following condi-

tions:

1. For each operation, there exists a time instant – referred to as its linearization point – at

which the operation takes e↵ect instantaneously,

2. The linearization point for an operation occurs sometime between its invocation and response.

3. No two operations have their linearization points at the exact same time, and

4. The permutation of the operations in the order of their linearization points is valid.

In fact, one way to verify whether a given execution is linearization is to identify linearization points

for the operations such that the above three conditions are satisfied. Figure 7 shows a choice of

linearization points for the various operations that satisfies the above conditions. Observe that the

order of the operations – according to the real-time at which the corresponding linearization points

occur – is identical to the order of the operations in the permutation below (which we have seen

earlier).

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

The linearization points satisfying all the conditions above may not necessarily be unique. Figure 8

shows another choice of linearization points for the same execution that also satisfies all the above

conditions. Also, not all possible choices of linearization points for a given execution may satisfy

the above conditions. For the execution to be linearizable, we only need to be able to find one set

of linearization points that satisfies the conditions.

For a given execution, if there does not exist any set of linearization points that satisfies all

the four conditions above, then the execution is not linearization. You should convince yourself

that the execution in Figure 5 is not linearizable.

c� 2016 Vaidya 12c� 2016 Vaidya 12c� 2016 Vaidya 12

1.4. IMPLEMENTING LINEARIZABILITY AND SEQUENTIAL CONSISTENCY

Linearizability is the strongest of the consistency conditions we will consider. We will say that

a consistency model C1 is stronger than consistency model C2 if every execution that satisfies C1

also satisfies C2. In other words, the execution set of C1 is fully contained in the execution set of

C2. If C1 is stronger than C2, then C2 is said to be the weaker consistency model.

Sequential Consistency

The sequential consistency model drops the real-time order-preserving requirement imposed by

linearizability.

Definition 2 Sequential consistency: An execution is said to be sequentially consistent if there

exists a permutation of the operations in the execution that is per-process order-preserving and

valid.

Since linearizability also requires that the executions be per-process order-preserving and valid,

in addition to requiring the real-time order-preserving property, every linearizable execution is also

sequentially consistent. However, since linearizability imposes an additional constraint compared to

sequential consistency, the converse is not true. That is, there exist executions that are sequentially

consistent but not linearizable. Recall from our prior discussion that For the execution in Figure 5

the permutation below is per-process order-preserving and valid. Thus, the execution in Figure 5

satisfies sequential consistency.

Write3(X, 5), Read2(X, 5), Write1(X, 2), Read1(X, 2), Read2(X, 2), Read1(X, 2)

On the other hand, for the execution in Figure 4, there does not exist any permutation that is

per-process order-preserving and valid. Hence that execution in Figure 4 does not satisfy sequential

consistency.

1.4 Implementing Linearizability and Sequential Consistency

All executions resulting from shared memory implemented using Algorithm 2 satisfy sequential

consistency. All executions resulting from shared memory implemented using Algorithm 3 satisfy

linearizability. Algorithm 1 along with the last-writer-wins rule achieves eventual consistency.

c� 2016 Vaidya 13c� 2016 Vaidya 13c� 2016 Vaidya 13

1.5. COMPOSABILITY

1.5 Composability

Given an execution E, we define E|x as the execution that includes only those operations in E for

which shared memory location x is an argument. For instance, if the execution in Figure 9 is called

E, then the execution in Figure 10 is E|X (“E mod X”), and the execution in Figure 11 is E|Y .

The linearizability consistency model is composable in the following sense:

• An execution E is linearizable if and only if, for each shared memory location X, E|X is

linearizable.

Sequential consistency is not composable. For instance, Figure 12 shows execution F . Observe

that F does not satisfy sequential consistency. However, F |X and F |Y both satisfy sequential

consistency.

1.6 Happened-Before for Shared Memory

We first define program-order and read-from relations, and use them to define the happened-before

relations for shared memory operations Read and Write.

Program Order: If a given process completes operation O1 some time prior to invoking operation

O2, then O1 is said to appear before O2 in the program order. We will denote that O1 appears

before O2 in program order as

O1 < O2.

Note that when O1 < O2, there may exist other operations at the same process that occur between

O1 and O2. That is, O1 and O2 are not necessarily consecutive operations at a given process. For

instance, in Figure 4, Write1(X, 2) < Read1(X, 5) and Read2(X, 5) < Read2(X, 2).

Reads-From: We will say that a Read operation R reads-from a Write W operation (on the

same shared variable) provided that R returns the value written by W .

Since it is possible for di↵erent write operations to write the same value to the same variable,

the above definition is somewhat ambiguous. To simplify the discussion, let us pretend that each

write to a given variable writes a unique value (for instance, we can make this property true by

adding a unique timestamp to each write operation). When R reads-from W , we will denote this

c� 2016 Vaidya 14c� 2016 Vaidya 14c� 2016 Vaidya 14

1.6. HAPPENED-BEFORE FOR SHARED MEMORY

by

W 99K R

For instance, in Figure 4, Write3(X, 5) 99K Read2(X, 5).

Happened-Before for shared memory: If operation O1 happened-before O2, we will denote

that as

O1 ! O2

This notation is identical to that for happened-before in message-passing systems. Three rules

together define the happened-before relation.

• (Program order) If O1 < O2, then O1 ! O2. That is, of O1 appears before O2 in the program

order at a certain process, then O1 happened-before O2.

• (Read-From) If O1 is a Write and O2 is a Read, and O1 99K O2, then O1 ! O2. That is, if

a given Read operation reads-from a particular Write operation, then that Write operation

happened-before the given Read.

• (Transitivity) If O1 ! O2 and O2 ! O3, then O1 ! O3.

For operations O1 and O2, if O1 6! O2 and O2 6! O1, then operations O1 and O2 are concurrent,

which is denoted as O1kO2.

Consider Figure 4: due to the program-order rule, we have Write1(X, 2) ! Read1(X, 5) and

Read2(X, 5) ! Read2(X, 2). Due to the read-from rule, we have Write3(X, 5) ! Read2(X, 5).

Finally, because Write3(X, 5) ! Read2(X, 5) and Read2(X, 5) ! Read2(X, 2), by transitivity, we

have Write3(X, 5) ! Read2(X, 2). Also, Write1(X, 2)kRead2(X, 5).

Permutations satisfying happened-before for shared memory: A permutation of opera-

tions in a given execution is said to satisfy the happened before relation provided that for any two

operations op1 and op2 in the given execution, op1 appears before op2 in the permutation if and

only if op1 ! op2.

For instance, the permutation below of the operations in Figure 9 satisfies the happened-before

relation and preserves the per-process order (but it is not valid).

Write1(X, 2), Write3(Y, 5), Read1(Y, 0), Read2(Y, 5), Read2(X, 2), Read1(X, 2)

c� 2016 Vaidya 15c� 2016 Vaidya 15c� 2016 Vaidya 15

Nitin-Work

Nitin-Work

Nitin-Work

Nitin Vaidya

Nitin Vaidya

Correction: text
highlighted in green
should be deleted

1.7. CAUSAL CONSISTENCY

1.7 Causal Consistency

An execution E is said to satisfy causal consistency provided that the following property is true,

for each process p that participates in the given execution.

• Consider an execution that includes only the following operations in E: all write operations

at all processes (including p), and all read operations at process p (thus, we exclude read

operations at processes other than p).

Let us denote the above (reduced) execution by Ep.

• There exists a permutation of the events in Ep that is valid and satisfies the happened-before

relation.

Consider execution F in Figure 12. For process p1 (whose timeline appears at the top of the figure),

the permutation below that satisfies the above requirements:

write1(X, 2), Read1(Y, 0), Write2(Y, 5)

Similarly for process p2 in execution F , the permutation below that satisfies the above requirements:

Write2(Y, 5), Read2(X, 0), Write1(X, 2)

Hence execution F is causally consistent. However, as noted earlier, this execution is not sequentially

consistent.

In the first permutation above, Write1(X, 2) appears before Write2(Y, 5). On the other hand,

in the second permutation, the order is opposite. Both orders satisfy happened-before because

Write1(X, 2) and Write2(Y, 5) are concurrent operations. Thus, under causal consistency, di↵erent

processes are allowed to “see” these two writes in di↵erent order. Sequential consistency does not

provide this flexibility.

c� 2016 Vaidya 16c� 2016 Vaidya 16c� 2016 Vaidya 16

